
Attribute-Based Credentials for Trust

The research leading to these results has received funding from the European Community’s Seventh Framework

Programme (FP7/2007-2013) under grant agreement n° 257782 for the project Attribute-based Credentials for

Trust (ABC4Trust) as part of the “ICT Trust and Security Research” theme.

H2.1 - ABC4Trust Architecture

for Developers

Jan Camenisch, Ioannis Krontiris, Anja Lehmann, Gregory Neven,

Christian Paquin, Kai Rannenberg

Editor: Ioannis Krontiris (Goethe University Frankfurt)

Reviewers: Norbert Götze (Nokia Siemens Networks), Jakob Illeborg Pagter

(Alexandra Institute)

Identifier: H2.1

Type: Heartbeat

Version: 1.0

Date: 22/11/2012

Status: Final

Class: Public

Abstract

The goal of ABC4Trust is to address the federation and interchangeability of technologies that support

trustworthy yet privacy-preserving Attribute-based Credentials (ABC). Towards this goal, one of the

main objectives of the project is to define a common, unified architecture for privacy-ABC systems to

allow comparing their respective features and combining them on common platforms. The first version

of this architecture is described in deliverable D2.1 of the project. Its main contribution is the

specification of the data artifacts exchanged between the implicated entities (i.e. issuer, user, verifier,

revocation authority, etc.), in such a way that the underlying differences of concrete Privacy-ABC

implementations are abstracted away through the definition of formats that can convey information

independently from the mechanism-specific cryptographic data. It also defines all technology-agnostic

components and corresponding APIs a system needs to implement in order to perform the corresponding

operations. The ABC4Trust architecture is an ongoing work and it continuously evolves, so this

Heartbeat H2.1 document comes to present a first update of D2.1. This document targets to keep early

adopters up-to-date, so it presents only those changes that are relevant to the development of

applications and removes the details of the internal components.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 2 of 94 Public Final version 1.0

Members of the ABC4TRUST consortium

1. Alexandra Institute AS ALX Denmark

2. CryptoExperts SAS CRX France

3. Eurodocs AB EDOC Sweden

4. IBM Research – Zurich IBM Switzerland

5. Johann Wolfgang Goethe – Universität Frankfurt GUF Germany

6. Microsoft Research and Development MS France

7. Miracle A/S MCL Denmark

8. Nokia Siemens Networks Management International GmbH NSN Germany

9. Research Academic Computer Technology Institute CTI Greece

10. Söderhamn Kommun SK Sweden

11. Technische Universität Darmstadt TUD Germany

12. Unabhängiges Landeszentrum für Datenschutz ULD Germany

Disclaimer: The information in this document is provided "as is", and no guarantee or warranty is given that the information

is fit for any particular purpose. The above referenced consortium members shall have no liability for damages of any kind

including without limitation direct, special, indirect, or consequential damages that may result from the use of these

materials subject to any liability which is mandatory due to applicable law.

Copyright 2012 by Goethe University Frankfurt, IBM Research – Zurich, Microsoft Research and Development

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 3 of 94 Public Final version 1.0

List of Contributors

Chapter Author(s)

Executive Summary Ioannis Krontiris (GUF)

First Chapter Ioannis Krontiris (GUF), Kai Rannenberg (GUF)

Second Chapter Gregory Neven (IBM)

Third Chapter Jan Camenisch (IBM), Anja Lehmann (IBM)

Fourth Chapter Jan Camenisch (IBM), Anja Lehmann (IBM), Gregory Neven (IBM),

Christian Paquin (MS)

Fifth Chapter Jan Camenisch (IBM), Anja Lehmann (IBM), Gregory Neven (IBM),

Christian Paquin (MS)

Sixth Chapter Christian Paquin (MS)

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 4 of 94 Public Final version 1.0

Executive Summary

ABC4Trust produces an architectural framework for Privacy-ABC technologies that allows different

realizations of these technologies to coexist, be interchanged, and federated. This enables users to

obtain credentials following different Privacy-ABC technologies and use them indifferently on the

same hardware and software platforms, as well as service providers to adopt whatever Privacy-ABC

technology best suits their needs.

In particular, the architecture has been designed to decompose future (reference) implementations of

Privacy-ABC technologies into sets of modules and specify the abstract functionality of these

components in such a way that they are independent from algorithms or cryptographic components

used underneath. The functional decomposition foresees possible architectural extensions to additional

functional modules that may be desirable and feasible using future Privacy-ABC technologies or

extensions of existing ones.

The architecture of ABC4Trust is defined by following a layered approach, where all Privacy-ABC

related functionalities are grouped together in a layer called ABCE (ABC Engine). Deliverable D2.1

“Architecture for Attribute-based Credential Technologies – Version 1” [CKL+11] describes the

details of this layer. More specifically, it provides simple interfaces towards the application layer,

thereby abstracting the internal design and structure. So the architecture defines and standardizes all

the technology-agnostic components of the ABCE layer, as well as the APIs they provide. For the

latter, the architecture defines first the interfaces that the ABCE components offer to the upper layers

(e.g. Application), as well as the APIs that the different components within the ABCE layer expose to

each other.

Equally important in the architecture is the specification of the data artifacts exchanged between the

implicated actors, in such a way that the underlying differences of concrete Privacy-ABCs are

abstracted away through the definition of formats that can convey information independently from the

mechanism-specific cryptographic data. So the document emphasizes on the XML based specification

of the corresponding messages exchanged during the issuance, presentation, revocation, and inspection

of privacy-enhancing attribute-based credentials.

The deployment of the reference implementation of this architecture in the pilot scenarios during the

next months will give valuable feedback to the architecture design and the experiences gained will

enable its finalization in the second version (M39). The second version will also concentrate on more

detailed definitions needed for advanced features (e.g. algebraic operation in predicates or in carry-

over issuing, efficient updates of attributes, limited spending, inspection of proofs, etc.)

However, the initial version presented in D2.1 has already started changing and this heartbeat comes

as an intermediary update of some parts that particularly concern application developers. In particular,

this heartbeat removes the details of how the ABCE layer looks internally and gives a simpler and

more modular explanation of its functionality. Correspondingly, it presents an updated “external” API

that the ABCE layer offers to the application layer, as well as an updated version of the dataformats. It

also presents some updates in the definition of concepts and features of ABCs. Overall, the update

reflects the current ABCE reference implementation that has been completed and being used by the

pilots. What presented here is independent of the internal ABCE architecture, which is constantly

evolving, but since these changes do not concern application developers, this document has removed

the corresponding sections.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 5 of 94 Public Final version 1.0

 Table of Contents

1 Introduction .. 9

1.1 Privacy issues of current IdM systems .. 9

1.1.1 IdSP knows all user transactions ..10

1.1.2 Linkability across domains ..10

1.1.3 Proportionality often violated ..10

1.1.4 Privacy Attribute-based Credentials ...10

1.2 The ABC4Trust Project .. 11
1.3 The ABC4Trust Architecture .. 12

1.3.1 Goals of the Architecture ..12

1.3.2 Architectural Strategies ...13

1.4 Structure of the document .. 14

2 Features and Concepts of Privacy-ABCs .. 16

2.1 Credentials .. 17
2.2 Presentation .. 17
2.3 Key Binding ... 18
2.4 Pseudonyms .. 19
2.5 Inspection .. 20
2.6 Credential Issuance ... 20
2.7 Revocation .. 21

3 Architecture .. 24

3.1 Architectural Design ... 24
3.2 Setup ... 26
3.3 Presentation of a Token ... 26
3.4 Issuance of a Credential .. 27

3.4.1 Issuance "from Scratch" ..28

3.4.2 Issuance with Advanced Features ..29

3.5 Inspection .. 29
3.6 Revocation .. 30

4 ABC4Trust Protocol Specification ... 31

4.1 Terminology and Notation .. 31

4.1.1 Notational Conventions ...31

4.1.2 Namespaces ...32

4.2 Setup ... 32

4.2.1 Credential Specification ..32

4.2.2 Issuer Parameters ...40

4.2.3 Inspector Public Key ...41

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 6 of 94 Public Final version 1.0

4.3 Revocation .. 42

4.3.1 Revocation Authority Parameters ...43

4.3.2 Revocation Information ...44

4.3.3 Non-Revocation Evidence ..45

4.4 Presentation .. 45

4.4.1 Presentation Policy ...46

4.4.2 Presentation Token ...52

4.4.3 Functions for Use in Predicates ..57

4.5 Issuance .. 58

4.5.1 Issuance Policy ...60

4.5.2 Issuance Token ...62

4.5.3 Issuance Messages ..63

4.5.4 Issuance Log Entries ..63

4.5.5 Revocation History ..64

4.5.6 Credential Description...66

5 API for Privacy-ABCs .. 69

5.1 ABCE methods for Users ... 69
5.2 ABCE methods for Verifiers ... 70
5.3 ABCE methods for Issuers ... 71
5.4 ABCE methods for Revocation Authorities ... 72
5.5 ABCE methods for Inspectors .. 73

6 Applicability to existing Identity Infrastructures .. 74

6.1 WS-* .. 74
6.2 SAML .. 76
6.3 OpenID .. 77
6.4 OAuth .. 78

6.4.1 Authorization grant ..80

6.4.2 Access token ...80

6.5 X.509 PKI .. 80
6.6 Integration summary .. 83

Appendix A - On the use of Security Levels .. 85

Glossary .. 86

Acronyms... 90

Bibliography ... 92

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 7 of 94 Public Final version 1.0

Index of Figures

Figure 2.1 - Entities and interactions diagram ... 16
Figure 3.1 - Overview of the Privacy-ABC Architecture on the User Side .. 25
Figure 3.2 - Presentation of a Token (Application Level) ... 27
Figure 3.3 - Issuance of a Credential ... 28
Figure 4.1 - Issuance of Privacy-ABCs ... 59
Figure 6.1 - WS-Trust protocol flow ... 74
Figure 6.2 - WS-Trust issuance protocol ... 75
Figure 6.3 - SAML protocol flow ... 76
Figure 6.4 - OpenID protocol flow .. 77
Figure 6.5 - OAuth 2.0 protocol flow .. 79
Figure 6.6 - X.509 protocol flow ... 82

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 8 of 94 Public Final version 1.0

Index of Tables

Table 4.1 - XML namespaces .. 32
Table A.1 - Security Levels (symmetric equivalent) based on ECRYPT II .. 85

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 9 of 94 Public Final version 1.0

1 Introduction

Many electronic applications and services require some authentication of participants to establish trust

relations, either for only one endpoint of communication or for both. One widely used mechanism for

this is password-based authentication. Today, individuals are asked to maintain dozens of different

usernames and passwords, one for each website with which they interact. This authentication

mechanism is not always optimal, since it creates a burden to individuals and encourages the reuse of

passwords through multiple services, which in turns makes online fraud and identity theft easier.

Spoofed website, stolen passwords and compromised accounts have negative impact not only to

individuals but also to businesses and governments, who are unable to offer high-value online

services.

Given the weaknesses of such a simple authentication method, multiple alternate techniques have been

developed to provide a higher degree of access control and personal data management. Identity

management (or IdM for short) consists of the processes and all underlying technologies for the

creation, management and usage of digital identities. Broadly speaking, these techniques come to

cover the need of individuals and businesses to verify whether a presented identifier or identity is

actually representing the entity one trusts or that is entitled to enter into a certain transaction or

communication [DEF11].

In this chapter, we start with a brief discussion about the privacy issues concerning the current IdM

systems. Then we introduce Attribute-based credentials and how they can be used to effectively

resolve these privacy issues. Following that, we go through the objectives and the goals, which

ABC4Trust project is aiming for, and continue with describing the design decisions and strategies

which have been considered in the ABC4Trust architectural work. The last section provides an

overview of the document structure and the organization of the following chapters.

1.1 Privacy issues of current IdM systems

In their everyday offline transactions, people have to present credentials in order to perform a number

of operations. There are several aspects in these transactions that are privacy respecting, but have not

been preserved in similar transactions online. For example, when individuals have to present their ID

card to open a bank account or board an airplane, the government authority issuing the ID cards does

not learn about every place individuals have to present their card.

On the other hand however, there are also some aspects of offline transactions that are not privacy

respecting. For example, showing the ID card to buy alcohol at the store reveals extraneous

information, such as the exact date of birth, while what is actually requested is to prove that one is

over a certain age. This is not really a problem in the offline world, because the infrastructure (i.e., the

clerk behind the counter) is not equipped to log and remember all disclosed information; but things

change in the online world: disclosed information is forever remembered.

Users’ online privacy is increasingly threatened as a number of countries are introducing or are about

to introduce electronic identity cards (eID) and drivers licenses [FP11], expanding the use of

credentials in the online world. Moreover, electronic ticketing and toll systems are also widely used all

over the world. As such electronic devices become widespread for identification, authentication, and

payment (which links them to people through credit card systems) in a broad range of scenarios.

One desirable goal of building online identity management systems should be to keep the privacy

respecting aspects of the offline paradigm and resolve the negative aspects. To see the problems that

emerge for privacy, one has to observe the flow and storage of information between the involved

entities. A typical identity management is based on the relations between three core parties: the user

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 10 of 94 Public Final version 1.0

(U) who requests a service from the Relying Party (RP) that offers the service and relies on the

Identity Service Provider (IdSP) to provide authentic information about the identity of the user.

We briefly review below some of the main privacy aspects of the practices followed today, based on

the parties and the relations introduced [Bra00].

1.1.1 IdSP knows all user transactions

Even though the IdSP does not necessarily need to know where the user is authenticating and which

service she is requesting for, this happens in a large portion of the existing federation identity

management systems. More specifically, in those systems where the Identity Service Provider is

involved each time a user authenticates to a Relying Party, the IdSP might be able to keep track of the

user actions, depending on the exchanged information between the IdSP and the RP. This enables the

IdSP to trace and link all communications and transactions of each user. Moreover, if the user does not

perform an active role in the information exchange between the IdSP and the RP (e.g. OpenID

[OpenID2.0]), there is a high security risk of identity theft and impersonation of the user by the IdSP

or an intruder who has gained access to the IdSP resources.

1.1.2 Linkability across domains

In today’s identity management systems, each Relying Party can store all the tokens that are presented

to it, and can link them together. The simplest example is X.509 certificates where the certificate’s

public key and issuer’s signature act as kind of digital fingerprint, inescapably leaving a digital trail

wherever the citizen presents the certificate. In this manner, dossiers can automatically be compiled

for each individual about his or her habits, behavior, movements, preferences, characteristics, and so

on. Different Relying Parties can exchange and link their data on the same basis.

1.1.3 Proportionality often violated

There are many scenarios where the use of certificates unnecessarily reveals the identity of their

holder, for instance scenarios where a service platform only needs to verify the age of a user but not

his/her actual identity.

A typical example is the citizen PKI, where each citizen is provided with a X.509 certificate [X509] as

the digital identifier for securely accessing the online services offered by the governments. These

certificates contain a set of attributes such as full name, date of birth, gender, and ID number, and

inevitably all will be revealed to the Relaying Party each time the certificate is presented.

Revealing more information than necessary not only harms the privacy of the users, but also increases

the risk of abuse of information such as identify theft when information revealed falls in the wrong

hands.

1.1.4 Privacy Attribute-based Credentials

Over the past years, a number of technologies have been developed to build Privacy-enhanced

Attribute-based Credential (Privacy-ABC) systems in a way that they can be trusted, like normal

cryptographic certificates, while at the same time they protect the privacy of their holder, resolving the

problems discussed in the previous section, in addition to other properties.

Such Privacy-ABCs are issued just like ordinary cryptographic credentials (e.g., X.509 credentials)

using a digital (secret) signature key. However, as we will see in Chapter 2, Privacy-ABCs allow their

holder to transform them into a new token, in such a way that the privacy of the user is protected. Still,

these transformed tokens can be verified just like ordinary cryptographic credentials (using the public

verification key of the issuer) and offer the same strong security.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 11 of 94 Public Final version 1.0

There are a handful of proposals on how to realize a Privacy-ABC system in the literature [Cha85,

Bra93, CL01, CL04]. Notable is especially the appearance of two technologies, IBM’s Identity Mixer

and Microsoft’s U-Prove, as well as extended work done in past EU projects. In particular, the EU-

funded projects PRIME
1
 and PrimeLife

2
 have actually shown that the state-of-the art research

prototypes of Privacy-ABC systems can indeed confront the privacy challenges of identity

management systems.

The PRIME project has designed an architecture for privacy-enhancing identity management that

combines anonymous credentials with attribute-based access control, and anonymous communication.

That project has further demonstrated the practical feasibility with a prototypical implementation of

that architecture and demonstrators for application areas such as e-learning and location-based

services. PRIME has, however, also uncovered that in order for these concepts to be applicable in

practice further research is needed in the areas of user interfaces, policy languages, and infrastructures.

The PrimeLife project has set out in 2008 to take up these challenges and made successful steps

towards solutions in these areas. For instance, it has shown that Privacy-ABC systems can be

employed on Smart Cards and thus address the requirements of privacy-protecting eID cards

[BCGS09]. Also, in the last decade, a large number of research papers have been published solving

probably all roadblocks to employ Privacy-ABC technologies in practice. This includes means to

revoke certificate [Ngu05, BDDD07, CL02, CKS09], protection of credentials from malware

[Cam06], protection against credential abuse [CHK+06, CHL06], proving properties about certified

attributes [CG08, CCS08], and means to revoke anonymity in case of misuse [CS03].

Despite all of this, the effort of understanding Privacy-ABC technologies so-far was rather theoretical

and limited to individual research prototypes. Indeed, PRIME and PrimeLife showed that Privacy-

ABC technologies provide the desirable level of privacy protection, but so far this has been

demonstrated in a very limited number of actual production environments with real users.

Furthermore, there are no commonly agreed set of functions, features, formats, protocols, and metrics

to gauge and compare these Privacy-ABC technologies, and it is hard to judge the pros and cons of the

different technologies to understand which ones are best suited to which scenarios.

Thus, there is still a gap between the technical cryptography and protocol sides of these technologies

and the reality of deploying them in production environments. A related problem with these emerging

technologies is the lack of standards to deploy them. For instance, a position paper published by

ENISA on “Privacy Features of European eID Card Specifications” [ENISA09] observes that Privacy-

ABC “technologies have been available for a long time, but there has not been much adoption in

mainstream applications and eID card applications” even though countries such as Austria and

Germany have taken some important steps in this sense.

1.2 The ABC4Trust Project

The aim of the ABC4Trust project is to deepen the understanding in Privacy-ABC technologies,

enable their efficient and effective deployment in practice, and their federation in different domains.

To this end, the project:

1. Produces an architectural framework for Privacy-ABC technologies that allows different

realizations of these technologies to coexist, be interchanged, and federated

a. Identify and describe the different functional components of Privacy-ABC technologies,

e.g. for request and issue of credentials and presentation of tokens;

1
 www.prime-project.eu

2
 www.primelife.eu

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 12 of 94 Public Final version 1.0

b. Produce a specification of data formats, interfaces, and protocols formats for this

framework;

2. Defines criteria to compare the properties of realizations of these components in different

technologies; and

3. Provides reference implementations of each of these components.

With a comparative understanding of today’s available Privacy-ABC technologies, it will be easier for

different user communities to decide which technology best serves them in which application scenario.

It will also be easier to migrate to newer Privacy-ABC technologies that will undoubtedly appear over

time. In addition, the same users may want to access applications requiring different Privacy-ABC

technologies, and the same applications may want to cater to user communities preferring different

Privacy-ABC technologies. Finally, the architecture and protocol specifications proposed by the

ABC4Trust project flatten the road towards establishing standards that allow for the interchangeability

and federation of Privacy-ABC technologies.

1.3 The ABC4Trust Architecture

From the three project goals above, this document focuses on the first one, namely the architecture for

Privacy-ABC technologies. This is presented extensively in the chapters to follow. It is however useful

for the reader to first understand the goals and design considerations that were taken into account

during the design of this architecture. This subsection elaborates on these decisions and prepares the

reader for the chapters that follow.

1.3.1 Goals of the Architecture

A contribution of this project to the state of the art is the definition of a common unified architecture

for federating and interchanging different Privacy-ABC systems in a way that

1. users will be able to obtain credentials for many Privacy-ABC technologies and use them

indifferently on the same hardware and software platforms, and

2. service providers and IdSPs will be able to adopt whatever Privacy-ABC technology best suits

their needs.

Furthermore, the architecture has been designed to decompose future (reference) implementations of

Privacy-ABC technologies into sets of modules and specify the abstract functionality of these

components in such a way that they are independent from algorithms or cryptographic components

used underneath. The functional decomposition foresees possible architectural extensions to additional

functional modules that may be desirable and feasible using future Privacy-ABC technologies or

extensions of existing ones.

Indeed the project aims not only to federate Privacy-ABC systems but to let them coexist on the same

platform. This in turn implies that different systems must be able to share common architecture

elements such as user interfaces or credential stores. Thus common APIs must be enforced across

different Privacy-ABC implementations to ensure their possible coexistence and interchangeability on

the same network node. Similarly, different systems should use common communication wrappers to

encode and exchange tokens and other items when communicating with peers on different network

node, so that a token recipient can immediately determine what Privacy-ABC technology the token

pertains to.

Thus the architectural framework specifies unified data formats and protocols across Privacy-ABC

implementations to enable not just coexistence and interchangeability on the same network node but

also coexistence and possible federation across different network nodes.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 13 of 94 Public Final version 1.0

1.3.2 Architectural Strategies

This section describes the design decisions and strategies that affect the overall organization of the

architecture and its higher-level structures.

1.3.2.1 A Layered Approach

The architecture of ABC4Trust is defined by following a layered approach, where all Privacy-ABC

related functionalities are grouped together in a layer called ABCE (ABC Engine). It provides simple

interfaces towards the application layer, thereby abstracting the internal design and structure. So, the

focus of the ABC4Trust architecture is to define and standardise the ABCE layer and its interfaces to

the upper layers (e.g. Application). With this respect, it does not analyze the internals of the other

layers, but it only concentrates on defining the interfaces necessary for those layers to use the

functionality of the ABCE and incorporate the corresponding tokens in the overall system.

Equally important in the architecture is the specification of the data artifacts exchanged between the

implicated entities, in such a way that the underlying differences of concrete Privacy-ABCs are

abstracted away through the definition of formats that can convey information independently from the

mechanism-specific cryptographic data.

In particular, this document concentrates in the following aspects:

 Functionality and interfaces – We define the functionality of the different layers focusing on

the ABCE layer and its components (see Chapter 3). We then describe how to integrate and

use the ABCE layer along the main use-cases, i.e. presentation of a token, issuance of a

credential, inspection and revocation. For each of these phases, we also describe the

corresponding interfaces offered by the ABCE layer to the application layer (see Chapter 5),

so that developers can build easily ABC-enabled applications. Developers, who want to build

new cryptographic providers and plug them into the framework, are redirected to D2.1 for a

detailed description of the APIs defined internally in the ABCE layer [CKL+11].

 Data specification – The issuance and presentation of Privacy-ABC credentials are interactive

processes, potentially involving multiple exchanges of messages. Chapter 4 defines the

contents, encoding and processing of these messages. In particular, it specifies the data

artifacts exchanged during the issuance, presentation, revocation, and inspection of privacy-

enhancing attribute-based credentials. Note that the document remains generic on which

specific protocols are used to issue or present Privacy-ABC credentials. There are several

existing messaging protocols, in which these credentials can be embedded, or new ones could

be defined in the future.

1.3.2.2 Building Privacy-ABC-enabled applications

ABC4Trust targets to provide an open reference implementation of the architecture described in this

document as part of its upcoming contributions. The reference implementation of ABC4Trust will be

embedded into example applications showing how to integrate the reference components into a sample

client-server platform.

Application developers can integrate the reference implementation of the ABC4Trust architecture

directly in their applications, without having to know how its layers are internally structured. That

means the application can incorporate user authentication functionality using Privacy-ABC, according

to the access policy of the requested service, by executing directly the necessary protocols for policy

and token exchange. For that, the application developers must simply follow the interfaces and data

formats described in this document.

However, other approaches are also possible. For example, following a passive federated redirection

pattern, the application may redirect the user to a Relying Party Secure Token Service (RP-STS)

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 14 of 94 Public Final version 1.0

component for authentication. This is shown and discussed in more details in Chapter 6, where we

discuss how the ABC4Trust architecture can be integrated with existing federated systems.

1.4 Structure of the document

The rest of this document is organized as follows:

Chapter 2 gives an introduction to the features supported by Privacy-ABCs and the actors involved,

in different kind of interactions, namely the presentation of tokens, inspection, credential issuance and

revocation.

Chapter 3 presents the modules of the ABC4Trust architecture and concentrates in particular on the

ABCE layer. It revisits each of the scenarios introduced in Chapter 2 and shows specifically how they

are performed by the ABCE modules

Chapter 4 can be considered as the core part of this document. It provides the specification for data

artifacts exchanged during the Privacy-ABCs lifecycle (issuance, presentation, revocation, and

inspection). It introduces an XML notation to specific all the necessary data formats, e.g. credentials

contents, access policies, presentation tokens, etc., as well as their wrapper message formats.

Chapter 5 defines the APIs for each of the ABCE modules. More specifically, it specifies the

interfaces exposed to the outside world (and in particular to the application layer).

Chapter 6 presents an overview of the most popular identity protocols and frameworks (e.g. WS-*,

SAML, OpenID, OAuth, and X.509) and describes the common challenges of these federated systems

concerning security, privacy and scalability. The analysis provided in this chapter, demonstrate how

Privacy-ABC technologies can help to alleviate these challenges. The reader may note that in this

chapter the Identity Service Provider is named “Identity Provider”. The reason for this is, that many of

the existing protocols use this term, though it is misleading, as the respective entity does not provide

identities.

1.5 What’s new

This heartbeat is an update to the concepts and to the external ABCE architecture, interfaces, and

languages that were previously described in ABC4Trust deliverable D2.1 [CKL+11]. This document

takes into account early feedback from the implementation and pilot work packages, and describes the

functionality realized by the first reference implementation. The changes are mostly minor; the most

important differences with deliverable D2.1 [CKL+11] are listed below.

Key binding now replaces and unifies the previous concepts of user binding and device binding. A

credential can optionally be bound to at most one secret key. Knowledge of the secret key is required

to create a valid presentation token from a key-bound credential and to derive pseudonyms. The secret

key could be stored on a trusted device like a smart card, which effectively realizes the previous

concept of device binding. See Section 2.3 for more details.

A list of supported attribute encodings is now included in the document, together with the

implications for which predicates can be used in combination with these encodings, and whether the

encoded attribute values will be inspectable. See Section 4.2.1 for more details.

New issuance data formats and interfaces are introduced to let the user-side ABCE return a

description of the newly issued credential, and to let the issuer-side ABCE store the issuance token for

future reference, together with all issuer-chosen attribute values of the new credential. In particular,

the stored issuance token contains the revocation handle of the issued credential, by means of which

the credential can later be revoked so required. See Sections 4.5.4 and 5.3 for more details.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 15 of 94 Public Final version 1.0

Human-friendly names for credentials and attributes as well as graphical representations (icons) for

credentials have been added to the credential specification. This enables the issuer to pass additional

information to the identity selection user interface, so that the user can better understand the different

options and so that the issuer can brand its issued credentials with custom images. See Section 4.2.1

for more details.

Minor XML schema changes to simplify XML parsing in the ABCE.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 16 of 94 Public Final version 1.0

2 Features and Concepts of Privacy-ABCs

This section provides a detailed explanation on the features supported by privacy-enhancing attribute-

based credentials (Privacy-ABCs), on the different involved entities, and on the type of interactions

that they engage in.

User

Issuer Revocation Authority

VerifierInspector

credential issuance

token presentation

revocation info retrieval

revocation info retrieval,

credential revocation

credential revocation

token inspection

Figure 2.1 - Entities and interactions diagram

Figure 2.1 gives an overview of the different entities and the interactions between them.

 The User is at the center of the picture, collecting credentials from various Issuers and

controlling which information from which credentials she presents to which verifiers. The

human User is represented by her User Agent, a software component running either on a local

device (e.g., on the User’s computer or mobile phone) or remotely on a trusted cloud service.

The User may own special hardware tokens to which credentials can be bound to improve

security. In the identity management literature, the User is sometimes referred to as the

requestor or the subject.

 An Issuer issues credentials to Users, thereby vouching for the correctness of the information

contained in the credential with respect to the User to whom the credential is issued. Before

issuing a credential, the Issuer may have to authenticate the User, which it may do using

Privacy-ABCs, using a different online mechanism (e.g., username and password), or using

out-of-band communication (e.g., by requiring the User to physically present herself at the

Issuer’s office). In the identity management literature, the Issuer is sometimes referred to as

the identity provider or attribute authority.

 A Verifier protects access to a resource or service that it offers by imposing restrictions on the

credentials that Users must own and the information from these credentials that Users must

present in order to access the service. The Verifier’s restrictions are described in its

presentation policy. The User generates from her credentials a presentation token that contains

the required information and the supporting cryptographic evidence. In the identity

management literature, the Verifier is sometimes also referred to as the relying party, the

server, or the service provider.

 A Revocation Authority is responsible for revoking issued credentials, so that these credentials

can no longer be used to generate a presentation token. The use of a particular Revocation

Authority may be imposed by the Issuer, in which case the revoked credentials cannot be used

with any Verifier for any purpose, or by the Verifier, in which case the effect of the revocation

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 17 of 94 Public Final version 1.0

is local to the Verifier and does not affect presentations with other Verifiers. Both the User

and the Verifier must obtain the most recent revocation information from the Revocation

Authority to generate, respectively verify, presentation tokens.

 An Inspector is a trusted authority who can de-anonymize presentation tokens under specific

circumstances. To make use of this feature, the Verifier must specify in the presentation policy

which Inspector should be able to recover which attribute(s) under which circumstances. The

User is therefore aware of the de-anonymization options when the token is generated and

actively participates to make this possible; therefore the User can make a conscious decision

based on her trust in the Inspector.

In an actual deployment, some of the above roles may actually be fulfilled by the same entity or split

among many. For example, an Issuer can at the same time play the role of Revocation Authority

and/or Inspector, or an Issuer could later also be the Verifier of tokens derived from credentials that it

issued.

Moreover, some of the flows presented in this document could be adapted for particular deployments

and scenarios. It is assumed that Verifiers already have in their possession or trust the Issuer and

Revocation Authority data needed to validate a presentation token. Nothing prevents, however, a User

to collect this data and present it to the verifier in a certified manner in a setup phase by piggybacking

on an existing infrastructure (e.g., by signing the artifacts using an X.509 certificate). This would add

flexibility to the system and allow dynamic trust establishments between the parties.

2.1 Credentials

A credential is a certified container of attributes issued by an Issuer to a User. An attribute is

described by the attribute type, determining the semantics of the attribute (e.g., first name), and the

attribute value, determining its contents (e.g., John). By issuing a credential, the Issuer vouches for the

correctness of the contained attributes with respect to the User. The User can then later use her

credentials to derive presentation tokens that reveal partial information about the encoded attributes to

a Verifier.

The credential specification specifies the list of attribute types that are encoded in a credential. Since

Privacy-ABCs natively only support integers of limited size (typically 256 bits) as attribute values, the

credential specification also specifies how the attribute values are mapped to their integer

representation. Depending on the data type and size of the attribute value, this encoding may involve a

cryptographic hash to be applied.

At setup, the Issuer generates public issuer parameters and a secret issuance key. The issuer

parameters are used by verifiers to verify the authenticity of presentation tokens. Trust management

and distribution are out of scope of this specification; a standard public-key infrastructure (PKI), e.g.,

using hierarchical certification authorities, can be used to ensure that verifiers obtain authentic copies

of the credential specifications and issuer parameters. Apart from cryptographic information, the issuer

parameters also contain other meta-data such as the hash algorithm to use to create presentation

tokens, as well as information for key binding, and revocation (see later). The Issuer keeps the

issuance key strictly secret and uses it only to issue credentials.

2.2 Presentation

To provide certified information to a Verifier (for authentication or an access decision), the User uses

one or more of her credentials to derive a presentation token and sends it to the Verifier. A single

presentation token can contain information from any number of credentials. The token can reveal a

subset of the attribute values in the credentials (e.g., IDcard.firstname = “John”), prove that a value

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 18 of 94 Public Final version 1.0

satisfies a certain predicate (e.g., IDcard.birthdate < 1993/01/01) or that two values satisfy a predicate

(e.g., IDcard.lastname = creditcard.lastname).

Apart from revealing information about credential attributes, the presentation token can optionally

sign an application-specific message and/or a random nonce to guarantee freshness. Moreover,

presentation tokens support a number of advanced features such as pseudonyms, key binding,

inspection, and revocation that are described in more details below.

A Verifier announces in its presentation policy which credentials from which Issuers it accepts and

which information the presentation token must reveal from these credentials. The Verifier can

cryptographically verify the authenticity of a received presentation token using the credential

specifications and issuer parameters of all credentials involved in the token. The Verifier must obtain

the credential specifications and issuer parameters in a trusted manner, e.g., by using a traditional PKI

to authenticate them or retrieving them from a trusted location.

The presentation token created in response to such a presentation policy consists of the presentation

token description, containing a mechanism-agnostic description of the revealed information, and the

presentation token evidence, containing opaque technology-specific cryptographic data in support of

the token description.

Presentation tokens based on Privacy-ABCs are in principle cryptographically unlinkable and

untraceable, meaning that Verifiers cannot tell whether two presentation tokens were derived from the

same or from different credentials, and that Issuers cannot trace a presentation token back to the

issuance of the underlying credentials. However, we will later discuss additional mechanisms that,

with the User's consent, enable a dedicated third party to recover this link again (see Section 2.5 for

more details).

Obviously, presentation tokens are only as unlinkable as the information they intentionally reveal. For

example, tokens that explicitly reveal a unique attribute (e.g., the User’s social security number) are

fully linkable. Moreover, pseudonyms and inspection can be used to purposely create linkability

across presentation tokens (e.g., to maintain state across sessions by the same User) and create

traceability of presentation tokens (e.g., for accountability reasons in case of abuse). Finally, Privacy-

ABCs have to be combined with anonymous communication channels (e.g., Tor onion routing) to

avoid linkability in the “layers below”, e.g., by the IP addresses in the underlying communication

channels or by the physical characteristics of the hardware device on which the tokens were generated.

2.3 Key Binding

To prevent “credential pooling”, i.e., multiple Users sharing their credentials, credentials can

optionally be bound to a secret key, i.e. a cryptographically strong random value that is assumed to be

known only to a particular user. The credential specification specifies whether the credentials issued

according to this specification are to employ key binding or not.

A presentation token derived from such a key-bound credential always contains an implicit proof of

knowledge of the underlying secret key, so that the Verifier can be sure that the rightful owner of the

credential was involved in the creation of the presentation token. As an extra protection layer, the

credentials can also be bound to a trusted physical device, such as a smart card, by keeping the secret

key in a protected area of the device. That is, the key cannot be extracted from the device, but the

device does participate in the presentation token generation to include an implicit proof of knowledge

of this key in the token. Thus, for credentials that are key-bound to a physical device it is impossible to

create a presentation token without the device.

The issuance of a key-bound credential can optionally be performed in such a way that the newly

issued credential is bound to the same secret key as an existing credential already owned by the User –

without the Issuer learning the secret key in the process (see Section 2.6). A Verifier can also

optionally impose in its presentation policy that all key-bound credentials involved in the creation of

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 19 of 94 Public Final version 1.0

the token must be bound to the same secret keys. Thereby, the secret key becomes a valuable “master

secret” that, when revealed to a third party, allows the latter to take over the User’s entire digital

identity.

2.4 Pseudonyms

There are many situations where a controlled linkability of presentation tokens is actually desirable.

For example, web services may want to maintain state information per user or user account to present

a personalized interface, or conversation partners may want to be sure to continue a conversation

thread with the same person that they started it with.

Privacy-ABCs have the concept of pseudonyms to obtain exactly such controlled linkability. If the

secret key from Section 2.3 is seen as the equivalent of a User’s secret key in a classical public-key

authentication system, then a pseudonym is the equivalent of the User’s public key. Just like a public

key, it is derived from the User's secret key and can be given to a Verifier so that the User can later re-

authenticate by proving knowledge of the secret key underlying the pseudonym. Unlike public keys of

which there is only one for every secret key, however, Users can generate an unlimited number of

unlinkable pseudonyms for a single secret key. Users can thus be known under different pseudonyms

with different Verifiers, yet authenticate to all of them using the same secret key.

To be able to re-authenticate under a previously established pseudonym, the User may need to store

some additional information used in the generation of the pseudonym. To assist the User in keeping

track of which pseudonym she used at which Verifier, the Verifier’s presentation policy specifies a

pseudonym scope, which is just a string that the User can use as a key to look up the appropriate

pseudonym. The scope string could for example be the identity of the Verifier or the URL of the web

service that the User wants to access.

We distinguish between the following three types of pseudonyms:

 Verifiable pseudonyms are pseudonyms derived from an underlying secret key as described

above, allowing the User to re-authenticate under the pseudonym by proving knowledge of the

secret key. Presenting a verifiable pseudonym does not involve presenting a corresponding

presentation token and is useful in login scenarios, e.g., to replace usernames/passwords.

 Certified pseudonyms are verifiable pseudonyms derived from a secret key that also underlies

an issued credential. By imposing same-user binding in the presentation policy and token (see

Section 2.3), a single presentation token can therefore prove ownership of a credential and at

the same time establish a pseudonym based on the same secret key. As an example, a student

could create several personas on a school discussion board using its core student credential,

presenting the pseudonym associated with each persona, and without the possibility of anyone

else (including a malicious Issuer) to present a matching pseudonym to hijack’s the user’s

identity.

 Scope-exclusive pseudonyms are certified pseudonyms that are guaranteed to be unique per

scope string and per secret key. For normal (i.e., non-scope-exclusive) pseudonyms, nothing

prevents a User from generating multiple unlinkable pseudonyms for the same scope string.

For scope-exclusive pseudonyms, it is cryptographically impossible to do so. By imposing a

scope-exclusive pseudonym to be established, a Verifier can be sure that only a single

pseudonym can be created for each credential or combination of credentials that are required

in the presentation. This feature can be useful to implement a form of “consumption control”

in situations (e.g., online petitions or one-time coupons) where users must remain anonymous

to the Verifier but should not be allowed to create multiple identities based on a single

credential. Note that scope-exclusive pseudonyms for different scope strings are still

unlinkable, just like normal verifiable pseudonyms.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 20 of 94 Public Final version 1.0

2.5 Inspection

Absolute user anonymity in online services can easily lead to abuses such as spam, harassment, or

fraud. Privacy-ABCs give Verifiers the option to strike a trade-off between anonymity for honest users

and accountability for misbehaving users through a feature called inspection.

An Inspector is a dedicated entity, separate from the Verifier, who can be asked to uncover one or

more attributes of the User who created a presentation token, e.g., in case of abuse. The Inspector must

on one hand be trusted by the User not to uncover identities unnecessarily, and must on the other hand

be trusted by the Verifier to assist in the recovery when an abuse does occur.

Presentation tokens are fully anonymous by default, without possibility of inspection. To enable an

Inspector to trace a presentation token when necessary, the presentation policy must explicitly specify

the identity of the Inspector, which information the Inspector must be able to recover, and under which

circumstances the Inspector can be asked to do so. The User then creates the presentation token in a

particular way so that the Verifier can check by himself, i.e., without help from the Inspector, that the

token could be inspected under the specified restrictions if necessary.

In more technical detail, the Inspector first sets up a public encryption key and a secret decryption key;

he makes the former publicly available but keeps the latter secret. The presentation policy specifies

 (a reference to) the Inspector’s public key,

 which attribute(s) from which credential(s) which Inspector must be able to recover, and

 the inspection grounds, i.e., an arbitrary human- and/or machine-readable string describing the

circumstances under which the token can be inspected.

The User then prepares the presentation token so that it contains encrypted versions of the requested

attribute values under the respective public key of the suggested Inspector, together with a verifiable

cryptographic proof that the encryption contains the same attribute values as encoded in the User’s

credentials and certified by the Issuer.

When the situation described in the inspection grounds arises, the Inspection Requester can ask for an

inspection. Besides the Verifier, other entities such as criminal prosecutors, courts or the User herself

are also potential requesters for inspection. Usually the Verifier holds the stored copy of the

presentation token and will send it to the Inspector for inspection, possibly together with some kind of

evidence (e.g., transaction logs, inquiry of competent authority, court order) that the inspection

grounds have been fulfilled. The inspection grounds are cryptographically tied to the presentation

token, so the Verifier cannot change these after having received the token. The Inspector uses its secret

key to decrypt the encrypted attribute values and returns the clear text values to the Inspection

Requestor.

De-anonymization of presentation tokens is probably the main use case for inspection, but it can also

be used to reveal useful attribute values to third parties instead of to the Verifier himself. For example,

suppose the Verifier is an online merchant wishing to accept credit card payments without running the

risk of having the stored credit card data stolen by hackers. In that case, he can make the User encrypt

her credit card number under the public key of the bank by specifying the bank as an Inspector for the

credit card number with “payment” as inspection grounds.

2.6 Credential Issuance

In the simplest setting, an Issuer issues credentials to Users “from scratch”, i.e., without relation to any

existing credentials already owned by the Users. In this situation, the User typically has to convince

the Issuer through some out-of-band mechanism that she qualifies for a credential with certain

attribute values, e.g., by showing up in person at the Issuer’s office and showing a physical piece of

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 21 of 94 Public Final version 1.0

ID, or by providing some bootstrap electronic identity. Credential issuance is a multi-round interactive

protocol between the Issuer and the User. The attribute values can be specified by either parties, or

jointly generated at random (i.e. the Issuer can be ensured an attribute value is chosen randomly and

not chosen solely by User, but without the Issuer learning the attribute value).

Privacy-ABCs also support a more advanced form of credential issuance where the information

embedded in the newly issued credential is “carried over” from existing credentials already owned by

the User, without the Issuer being able to learn the carried-over information in the process. In

particular, the newly issued credential can

3. carry over attribute values from an existing credential,

4. carry over “self-claimed” attribute values, i.e., values chosen by the User,

5. be bound to the same secret key as an existing credential or verifiable pseudonym (see

Sections 2.3 and 2.4), and

all without the Issuer being able to learn the carried-over attribute values or secret key(s) in the

process.

Moreover, the Issuer can insist that certain attributes be generated jointly at random, meaning that the

attribute will be assigned a fresh random value. The Issuer does not learn the value of the attribute, but

at the same time the User cannot choose, or even bias, the value assigned to the attribute. This feature

is for instance helpful to impose usage limitation of a credential. To this end, the Issuer first embeds a

jointly random value as serial number in the credential. A Verifier requesting a token based on such a

credential can require that its serial number attribute must be disclosed by the User, such that it can

detect if the same credential is used multiple times. The jointly random attribute hereby ensures that

the Verifier and Issuer cannot link the generated token and issued credential together, and the User can

not cheat by biasing the serial number in the credential.

The Issuer publishes or sends to the User an issuance policy consisting of a presentation policy and a

credential template. The presentation policy expresses which existing credentials the User must

possess in order to be issued a new credential, using the same concepts and format as the presentation

policy for normal token presentation (see Section 2.2). The User prepares a special presentation token

that fulfills the stated presentation policy, but that contains additional cryptographic information to

enable carrying over attribute, user binding, and device binding information. The credential template

describes the relation of the new credential to the existing credentials used in the presentation token by

specifying

 which attributes of the new credential will be assigned the same value as which attributes from

which credential in the presentation token,

 whether the new credential will be bound to the same secret key as one of the credentials or

pseudonyms in the presentation token, and if so, to which credential or pseudonym.

The User and Issuer subsequently engage in a multi-round issuance protocol, at the end of which the

User obtains the requested credential.

2.7 Revocation

No identification system is complete without a proper means of revoking credentials. There can be

many reasons to revoke a credential. For example, the credential and the related user or device secrets

may have been compromised, the User may have lost her right to carry a credential, or some of her

attribute values may have changed. Moreover, credentials may be revoked for a restricted set of

purposes. For example, a football hooligan’s digital identity card could be revoked for accessing sport

stadiums, but is still valid for voting or submitting tax applications.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 22 of 94 Public Final version 1.0

In classical public-key authentication systems, revocation usually works by letting either the Issuer or

a dedicated Revocation Authority publish the serial numbers of revoked certificates in a so-called

certificate revocation list. The Verifier then simply checks whether the serial number of a received

certificate is on such a list or not. The same approach does not work for Privacy-ABCs, however, as

Privacy-ABCs should not have a unique fingerprint value that must be revealed at each presentation,

as this would nullify the unlinkability of the presentation tokens again. However, there are

cryptographically more advanced revocation mechanisms that provide the same functionality in a

privacy-preserving way, i.e., without imposing a unique trace on the presentation tokens. This

document describes an abstract interface that covers all currently known revocation mechanisms.

Credentials are revoked by dedicated Revocation Authorities, which may be separate entities, or may

also take the role of Issuer or Verifier. The Revocation Authority publishes its revocation parameters

and regularly (e.g., at regular time intervals, or whenever a new credential is revoked) publishes the

most recent revocation information that Verifiers use to make sure that the credentials used in a

presentation token have not been revoked. The revocation parameters contain information where and

how the Verifiers can obtain the most recent revocation information. Depending on the revocation

mechanism, the identifiers of revoked credentials may or may not be visible from the revocation

information. It is important that Verifiers obtain the most recent revocation information from the

Revocation Authority directly, or that the revocation information is signed by the Revocation

Authority if it is provided by the User together with the presentation token.

In order to prove that their credentials have not been revoked, Users may have to maintain non-

revocation evidence for each credential and for each Revocation Authority against which the

credential must be checked. The first time that a User checks one of her credentials against a particular

Revocation Authority, she obtains an initial non-revocation evidence. Later, depending on the

revocation mechanism used, the User may have to obtain regular non-revocation evidence updates at

each update of the revocation information. Also depending on the revocation mechanism, these

evidence updates may be the same for all Users/credentials or may be different for each

User/credential. In the latter case, again depending on the mechanism, the Users may fetch their

updates from a public bulletin board or obtain their updates over a secure channel.

We distinguish between two types of revocation. Apart from a small list of exceptions, all revocation

mechanisms can be used for either type of revocation.

 In Issuer-driven revocation, the Issuer specifies as part of the issuer parameters the

Revocation Authority (and revocation parameters) to be used when verifying a presentation

token involving a credential issued by his issuer parameters. Issuer-driven revocation is

always global in scope, meaning that any presentation token MUST always be checked against

the most recent revocation information by the specified Revocation Authority, and that the

Issuer denies any responsibility for revoked credentials. Issuer-driven revocation is typically

used when credentials have been compromised or lost, or when the User is denied all further

use of the credential. The Revocation Authority may be managed by or be the same entity as

the Issuer, or may be a separate entity. Issuer-driven revocation is performed through a

revocation handle, a dedicated unique identifier that the Issuer embeds as an attribute in each

issued credential (but which by default should not be revealed in a presentation token). When

the Issuer, a Verifier, or any third party wants to revoke a credential, it must provide the

revocation handle to the Revocation Authority. How the party requesting the revocation learns

the revocation handle is out of the scope of this document; this could for example be done

digitally by insisting in the presentation policy that the revocation handle be revealed to a

trusted Inspector, or physically by arresting the person and obtaining his or her identity card.

 In Verifier-driven revocation, the Verifier specifies as part of the presentation policy against

which Revocation Authority or Authorities (and revocation parameters) the presentation must

additionally be checked, i.e., on top of any Revocation Authorities specified by the Issuer in

the issuer parameters. The effect of the revocation is local to those Verifiers who explicitly

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 23 of 94 Public Final version 1.0

specify the Revocation Authority in their presentation policies, and does not affect

presentations with other Verifiers. Verifier-driven revocation is mainly useful for purpose-

specific revocation (e.g., a no-fly list for terrorists) or verifier-local revocation (e.g., a website

excluding misbehaving users from its site). Note that if unlinkability of presentation tokens is

not a requirement, the latter effect can also be obtained by using scope-exclusive pseudonyms.

The Revocation Authority may be managed by or be the same entity as the Verifier, or may be

a separate entity. Verifier-driven revocation can be performed based on any attribute, not just

based on the revocation handle as for Issuer-driven revocation. It is up to the Verifier and/or

the Revocation Authority to choose an attribute that on the one hand is sufficiently identifying

to avoid false positives (e.g., the User’s first name probably doesn’t suffice) and on the other

hand will be known to the party likely to request the revocation of a credential. Verifier-driven

revocation is essentially a black list of attribute values, banning all credentials with a

blacklisted attribute value.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 24 of 94 Public Final version 1.0

3 Architecture

This chapter briefly describes the architecture of Privacy-ABC systems, their components and the

relations among those and shows how to deploy the provided functionalities in the main usage

scenarios.

Following standard design principles, our architecture uses a layered approach, where related

functionalities are grouped into a common layer that provides simple interfaces towards other layers

and components, thereby abstracting the internal design and structure. As mentioned in Chapter 1, the

architecture focuses on the technology-independent components for Privacy-ABC systems, grouped in

the ABCE layer, which can be integrated in various application and deployment scenarios. That is, we

do not propose a concrete application-level deployment but provide generic interfaces to the ABCE

layer that allow for a flexible integration. Note that we aim at an architecture that is capable of

supporting all the privacy-enhancing features of privacy-ABC, but at the same time is not exclusive to

those, i.e., it is also generic enough to support “standard” ABC technologies such as X.509

certificates.

We start by describing the main functionalities of the different layers and components in Section 3.1.

We then describe how to integrate and use the ABCE layer along the main use-cases. That is, in

Section 3.2 we provide an overview of the setup-functionalities that are provided by the ABCE layer.

Section 3.3 is devoted to the presentation of tokens, thereby describing the steps that a User and

Verifier have to perform in order to create and to verify a presentation token. The process of the

issuance of a credential is described in Section 3.4, and can incorporate some of the presentation steps

described in the previous section. Section 3.5 then deals with the inspection process that can be used to

reveal some previously hidden attributes, and Section 3.6 describes the ABCE functionalities in the

context of revocation.

This chapter assumes that the reader is already familiar with the general features and concepts of

Privacy-ABCs (see Chapter 2 otherwise) and gives a high-level description of the Privacy-ABC-core

architecture and its components. Thus, it can also be seen as an introduction to Chapter 4 which

describes the data formats that are exchanged among Privacy-ABC entities and to Chapter 5 that

presents the application programming interfaces (API) of the ABCE layer components. Note that this

chapter already refers to the external methods provided by the ABCE layer which are described in

more detail in Chapter 5.

3.1 Architectural Design

The Privacy-ABC architecture defines for each entity the core-components required to operate with

attribute-based credentials. As an example, Figure 3.1 shows an overview of the components for the

User's side.

For the sake of completeness, the figure also shows an application layer. As mentioned before, this

layer is not part of the Privacy-ABC architecture, but will operate on top of that. Roughly, this layer

comprises all application-level components, which in the case of the User-side deployment includes

the main application and the IdentitySelection (see description below). The application layer of

Verifiers and Issuers will also contain the policy store and access control engine.

The ABCE layer contains all technology-agnostic methods and components for a Privacy-ABC

system. That is, it contains e.g. the methods to parse an obtained presentation policy, perform the

selection of applicable credentials for a given policy or to trigger the mechanism-specific generation or

verification of the cryptographic evidence. The ABCE layer is invoked by the application-layer and

calls out the CryptoEngine to obtain the mechanism-specific cryptographic data. To perform their

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 25 of 94 Public Final version 1.0

tasks, the internal components can also make use of other external components such as the

KeyManager, RevocationProxy or IdentitySelection.

Figure 3.1 - Overview of the Privacy-ABC Architecture on the User Side

The KeyManager deals with the (cryptographic) keys of all parties and keeps them up to date (key life

cycle management). On input of an identifier (URI) for a key, it returns a (list of) cryptographic key(s)

that are currently valid for that URI. This component takes also care of fetching the current (public)

revocation information that will be needed to keep the credentials up to date, or to verify whether a

received presentation token is still valid.

The CryptoEngine provides common interfaces to generate the cryptographic information required

e.g., to create, present, verify or inspect a presentation/issuance token. It internally orchestrates and

performs the mechanism-specific cryptographic methods, such as the computation of signatures (e.g.,

Idemix, U-Prove signature), commitments, zero-knowledge proofs, etc.

The RevocationProxy handles the communication between the CryptoEngine and the Revocation

Authority for the generation or presentation of tokens/credentials that are subject to revocation. The

concrete communication pattern strongly depends on the specific revocation mechanisms.

The IdentitySelection component provides methods, possibly presented by a graphical user interface,

to support a User in choosing a preferred combination of credential and/or pseudonyms, if there are

different possibilities to satisfy a given presentation policy. A user interface is also used to obtain User

consent, whenever personal data is revealed.

The DeviceInterface components provide optional generic interfaces to ease the integration of external

devices, such as smart cards, for both the “outsourcing” of computation and also to obtain data stored

externally on the device. The integration of an external device might for instance be necessary if key

binding to a smart card is required (see Chapter 2 for more details).

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 26 of 94 Public Final version 1.0

3.2 Setup

In order to furnish all parties in an Privacy-ABC setting with the required key-material, the ABCE

layer provides for each party a dedicated method to obtain its private and public (if any) cryptographic

parameters. Private keys will be stored in the trusted storage of the corresponding party.

In particular, the ABCE layer provides the following setup methods (see Chapter 5 for the detailed

specification)

 setupUser() generates a cryptographically strong user secret.

 setupSystemParameters() generates system wide public parameters for Issuers, e.g.,

this method can be invoked by an Issuer itself or an independent entity if several Issuers share

the the same system parameters.

 setupIssuerParameter() generates a secret issuance key and public Issuer parameters

for the given system parameters and a given credential specification.

 setupRevocationAuthorityParameter() generates a secret Revocation Authority

key, public Revocation Authority parameters and the initial revocation information.

 setupInspectionPublicKey() generates a secret decryption key and corresponding

public encryption key an Inspector.

3.3 Presentation of a Token

The process of the presentation of a token is triggered when the application on the User’s side contacts

a Verifier to request access to a resource (Figure 3.2 – step 1). Having received the request, the

Verifier responds with one or more Presentation Policies. A Presentation Policy defines what data a

user has to reveal to the Verifier in order to gain access to the requested resource. That is, it defines

e.g. which credentials from which trusted Issuers are required, which attributes from those credentials

have to be revealed, or which conditions the attributes have to fulfil. If there are several alternatives of

applicable policies the server responds with a set of presentation policies. A detailed specification of a

presentation policy is given in Chapter 4. Upon receiving the policy (Figure 3.2 – step 2.a), the

application of the User’s side invokes the ABCE layer by calling the createPresentation

Token() method with the received presentation policy (Figure 3.2 – step 2.b).

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 27 of 94 Public Final version 1.0

Figure 3.2 - Presentation of a Token (Application Level)

The User’s ABCE layer then investigates whether the User has the necessary credentials and/or

established pseudonyms to create a token that satisfies the policy. If there are one or more ways in

which the policy can be satisfied, this method will invoke an identity selection possibly presented as a

user interface to let the user choose her preferred way of generating the presentation token or cancel

the action. Once the ACBE layer has determined the preferable token that should be generated in

response to the policy, it invokes the CryptoEngine to obtain the corresponding cryptographic

evidence. It finally outputs the presentation token (Figure 3.2 – step 3.a), consisting of the presentation

token description and the crypto evidence, or an error message in case no token could be generated.

The User’s application then sends the presentation token to the Verifier (Figure 3.2 – step 3.b), which

passes the received presentation token and the previously sent presentation policies to its ABCE layer

(Figure 3.2 – step 2.b+3.c), by calling the verifyTokenAgainstPolicy() method. The

Verifier’s ABCE layer then verifies in two steps whether the presentation token satisfies the

presentation policy. First, it checks whether the statements made in the presentation token description

satisfy the required statements in the referred presentation policy. Secondly – and with the help of the

CryptoEngine – it verifies the validity of the crypto evidence for the given token description. In case

that both checks succeed, the ABCE layer stores the token in a dedicated store (if requested by the

application) and returns a description of the token to the application layer. This description includes a

unique identifier, which allows the application to retrieve the token later from the store. If one of the

checks fails, a list of error messages is returned to the application.

3.4 Issuance of a Credential

Roughly, issuance of a credential is an interactive protocol between a User and an Issuer, where at the

end the User obtains a credential, i.e., a certified list of attribute-value pairs (or an error message, in

case the protocol failed). In fact, issuance can be seen as a special case of a normal resource request,

where the resource is a new credential that the User wants to obtain. Thus, to handle such a credential

request, the ABCE layer might invoke the same components and procedures as in the presentation

scenario described above. However, the issuance scenario also requires an additional ABCE

component and additional or modified steps on the other components, in order to allow, e.g., for

“carried-over” attributes. That is, attributes can be “carried over” from existing credentials already

owned by the User into the newly issued one, in a way such that the Issuer does not learn those values.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 28 of 94 Public Final version 1.0

To start an issuance process the User first authenticates toward the Issuer (Figure 3.3 – step 1). How

the authentication is done, is outside of the scope of the Privacy-ABC architecture, i.e., it can even be

done using non-ABC technologies such as standard username-password checks. After, or together,

with the authentication, the User sends a credential request which specifies the credential type she

wants to obtain (Figure 3.3 - step 2). As described in Section 2.7, the subsequent issuance protocol can

come in different ways.

Figure 3.3 - Issuance of a Credential

3.4.1 Issuance “from Scratch”

In the most simple setting an Issuer issues credentials to Users “from scratch”, i.e., without relation to

any existing credentials or pseudonyms already owned by the Users. In such a setting, the Issuer will

invoke the ABCE layer on the initIssuanceProtocol() method with input the Issuer certified

attributes and an “empty” issuance policy, i.e., an issuance policy that contains solely the requested

credential specification identifier, but not a credential template (Figure 3.3 – step 3). Calling this

method with an empty issuance policy will immediately start the issuance protocol of the new

credential. The ABCE layer then triggers the cryptographic protocol by invoking the corresponding

CryptoEngine and fetches the required crypto data that needs to be transferred to the User. This

information is finally returned in form of an issuance message by the ABCE layer to the Issuer’s

application from where it is then send to the User.

Note that even in this simple setting, credential issuance can be a multi-round interactive protocol

between the Issuer and the User. To link the different issuance messages of an issuance message

together, each issuance message will therefore also contain a context attributes that uniquely identifies

the issuance session.

Upon receiving a new issuance message, both the User and Issuer pass that message to their ABCE

layer using the issuanceProtocolStep() method (Figure 3.3 – step 4). If the output of that

method is another issuance message, this is sent back to the other party. At the end of a successful

issuance protocol, the User stores its freshly generated credential in its local credential store.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 29 of 94 Public Final version 1.0

3.4.2 Issuance with Advanced Features

In a more advanced setting, the information embedded in the newly issued credential can be invisibly

“carried over” from existing credentials already owned by the User. To this end, the issuance protocol

is preceded by the generation and verification of an issuance token. Thus, the Issuer first needs to send

an issuance policy (Figure 3.3 – step 4), which consists of a presentation policy and a credential

template. The presentation policy expresses which existing credentials the User must possess in order

to be issued a new credential, using the same concepts and format as the presentation policy for

normal token presentation. The credential template describes the relation of the new credential to the

existing credentials used in the presentation token by specifying e.g. which attribute values from the

credentials in the presentation token will be reused in the new credential, and where. To hide this

complexity of the advanced issuance from the application layer both, the issuance policy and issuance

token are wrapped in an issuance message. Thus the external handling of advanced and simple

issuance is exactly the same.

More precisely, the advanced issuance is triggered by invoking the issuanceProtocolStep()

method of the Issuer’s ABCE layer on input an issuance policy (as described above) and list of known

user attributes. This method then simply wraps the received issuance policy into an issuance message

and assigns a unique context value to it, which links the different messages of this issuance protocol

together. The returned issuance message is then sent to the User which in turn invokes the ABCE

method issuanceProtocolStep() with the received message (Figure 3.3 – step 4). The User’s

ABCE layer will recognize the advanced issuance protocol by unwrapping the message and obtaining

a (non-empty) issuance policy. It then internally prepares an issuance token, i.e., a special presentation

token that fulfils the stated issuance policy, but that also contains additional information to enable

carried-over attributes or key binding. This process is similar to the generation of a standard

presentation token, i.e., it will eventually invoke the IdentitySelection/UI to determine the preferred

way of generating the issuance token in case there are different credentials/pseudonyms that could be

used. The User’s ABCE layer will then finally call out to the CryptoEngine to obtain the cryptographic

evidence for the token and additional cryptographic data that will be used in the subsequent issuance

protocol, e.g., for the carried-over attributes. The issuance token itself is then wrapped into an issuance

message and gets passed back to the Issuer through the application layer of the User.

On the Issuer’s side, the incoming issuance message is forwarded (as in the simple setting) to the

issuanceProtocolStep() method of the ABCE layer (Figure 3.3. – step 4). Whenever the ABCE

layer detects an issuance token in an issuance message it internally verifies whether it satisfies the

corresponding issuance policy (using similar methods as in the verification of a presentation token). If

the verification succeed, i.e., the token description satisfies the issuance policy and the cryptographic

evidence supports the token description, the ABCE layer invokes the CryptoEngine to obtain the first

“real” message of the issuance protocol, which is then wrapped into an issuance message and returned

to the Issuer’s application layer which then forwards the message to the User.

Whenever the User or Issuer receive an issuance message they will invoke their local

issuanceProtocolStep() methods. The output is then either another issuance message that

must be sent to the other party, or an indication of completion of the protocol. At the end of the

protocol the User obtains the requested credential according to the credential template.

3.5 Inspection

As described in detail in Section 2.6, the inspection of credentials allows lifting the full anonymity that

is usually provided by Privacy-ABC based presentation tokens in case of abuse or misbehaving Users.

If inspectable attributes are requested by a Verifier, the presentation token of the User are specially

prepared, such that the attributes in question are not revealed to the Verifier, but are verifiably

encrypted in the token (under the public key of the Inspector) and tied to some inspection ground that

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 30 of 94 Public Final version 1.0

were accepted by the User. In case the event specified in the inspection grounds occurred, the

Inspection Requestor (e.g., the Verifier) can contact the Inspector and request the “de-anonymization”

of a presentation token. In case inspection is triggered by the Verifier, he first fetches the presentation

token using the getToken() method of the ABCE layer. It then sends the received presentation

token with the (non-cryptographic) evidence that the inspection grounds are fulfilled to the Inspector.

If the Inspector accepts the evidence (the verification whether the evidence meets the inspection

grounds is out of the scope of the Privacy-ABC system), he invokes the ABCE layer on the

Inspect() method, which is directly forwarded to the CryptoEngine. Therein, the inspectable

attributes are decrypted and returned to the application layer of the Inspector.

3.6 Revocation

The ABCE layer provides several interfaces to support revocation. For instance, Users and Verifiers

can obtain recent revocation information by contacting the Revocation Authority which will then

invoke its getCurrentRevocationInformation() for a given identifier of Revocation

Authority parameters. Depending on the concrete revocation mechanism, the issuance of a credential

or the generation of a presentation token might require additional interaction with a Revocation

Authority. This will be detected by the CryptoEngine (of the User, Issuer or Verifier), which then

invokes the RevocationProxy, which in turn contacts the Revocation Authority.

In case a credential should be revoked (i.e., Issuer-driven revocation) or a (set of) attributes should be

“black-listed” by a Verifier/3rd Party (i.e., Verifier-driven revocation) the corresponding Revocation

Authority calls the revoke() method of the ABCE layer, on input the given attribute(s). For Issuer-

driven revocation this attribute will be the unique revocation handle of the credential that is supposed

to be revoked.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 31 of 94 Public Final version 1.0

4 ABC4Trust Protocol Specification

Given the multitude of distributed entities involved in a full-fledged Privacy-ABC system, the

communication formats using which these entities interact must be fixed. Rather than profiling an

existing standard format for identity management protocols such as SAML, WS-Trust, or OpenID, we

felt that the many unique features of Privacy-ABCs were more suitably addressed by defining a

dedicated format. In particular, existing standards do not support typical Privacy-ABC features such as

pseudonyms, inspection, privacy-enhanced revocation, or advanced issuance protocols. In Chapter 8,

we discuss how our Privacy-ABC infrastructure could be integrated with a number of existing

frameworks.

This chapter provides the specification for data artifacts exchanged during the issuance, presentation,

revocation, and inspection of privacy-enhancing attribute-based credentials for use in the ABC4Trust

project. Our specification separates the mechanism-independent information conveyed by the artifacts

from the opaque mechanism-specific cryptographic data. This specification only defines the format for

the mechanism-independent information. It provides anchor points for where instantiating

technologies, in particular, U-Prove and Identity Mixer, can insert mechanism-specific data, but does

not fix standard formats for this data.

For the specification we use XML notation in the spirit of XML Schema, but refrain from providing a

full-fledged XML Schema specification within this document for the sake of readability; we do,

however, make available a separate XML schema file for the artifacts defined here
3
. Although the

artifacts are defined in XML, one could create a profile using a different encoding (ASN.1, JSON,

etc.) See the corresponding schema file for more details.

We start in Section 4.1 with introducing the terminology and notation used throughout this chapter.

Section 4.2 then provides the artifacts for the setup of the different Privacy-ABC entities, which

includes e.g., the description of the credential type and the public parameters of an Issuer and

Inspector. In Section 4.3 the specifications for all artifacts related to revocation are given. Section 4.4

is then dedicated to the Issuance of a credential and provides artifacts for the issuance policy and

issuance token. For the presentation of a token, the corresponding specifications of a presentation

policy and a presentation token are introduced in Section 4.4.

4.1 Terminology and Notation

4.1.1 Notational Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,

“RECOMMENDED”, and “MAY” in this document are to be interpreted as described in [RFC2119].

This specification uses the following syntax to define outlines for XML data:

 The syntax appears as an XML instance, but values in italics indicate data types instead of

literal values.

 Characters are appended to elements and attributes to indicate cardinality:

“?” (0 or 1)

3
 Available under https://abc4trust.eu/download/xml/ABC4Trust_schema_H2.1.xsd

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 32 of 94 Public Final version 1.0

“*” (0 or more)

“+” (1 or more)

 The character “|” is used to indicate a choice between elements.

 The characters “(“ and “)” are used to indicate that contained items are to be treated as a group

with respect to cardinality or choice.

 XML namespace prefixes (see Table 4.1) are used to indicate the namespace of the element

being defined.

 XML elements and Attributes defined by this specification are referred to in the text of this

document using XPath 1.0 expressions.

4.1.2 Namespaces

The base XML namespace URI used by the definitions in this document is as follows:

Prefix XML namespace Specification

xs http://www.w3.org/2001/XMLSchema [XMLSchema2]

abc http://abc4trust.eu/wp2 This document

Table 4.1 - XML namespaces

4.2 Setup

4.2.1 Credential Specification

The credential specification describes the contents of the credentials. It can be created by the issuer or

by any external authority so that multiple issuers can issue credentials of the same specification. How

this artifact is protected (authenticated) is application specific; e.g., it could be included in a XML-

signed document or provided as part of some metadata retrievable from a trusted source.

<abc:CredentialSpecification Version=”1.0” KeyBinding=”xs:boolean”

Revocable="xs:boolean">

 <abc:SpecificationUID>xs:anyURI</abc:SpecificationUID>

 <abc:FriendlyCredentialName xml:lang=”xs:language”/>*

 <abc:DefaultImageReference>xs:anyURI</abc:DefaultImageReference>?

 <abc:AttributeDescriptions MaxLength=”xs:unsignedInt”>

 <abc:AttributeDescription Type=”xs:anyURI”

 DataType=”xs:anyURI” Encoding=”xs:anyURI”>

 <abc:FriendlyAttributeName

lang=”xs:language”>xs:string</abc:FriendlyAttributeName>*

<abc:AllowedValue>…</abc:AllowedValue>*

 </abc:AttributeDescription>*

 </abc:AttributeDescriptions>

</abc:CredentialSpecification>

http://www.w3.org/2001/XMLSchema
http://abc4trust.eu/wp2

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 33 of 94 Public Final version 1.0

The following describes the attributes and elements listed in the schema outlined above:

/abc:CredentialSpecification

This element contains the credential specification defining the contents of issued credentials adhering

to this specification.

/abc:CredentialSpecification/@Version

This attribute indicates the version of this specification. The value MUST be “1.0”.

/abc:CredentialSpecification/@KeyBinding

This attribute indicates whether credentials adhering to this specification must be bound to a secret

key. See Section 2.3 for more information on key binding.

/abc:CredentialSpecification/@Revocable

This attribute indicates whether credentials adhering to this specification are revocable or not. If the

Revocable attribute is set to true, then this credential specification MUST contain a dedicated

attribute for the revocation handle with attribute type http://abc4trust.eu/wp2/

abcschemav1.0/revocationhandle. The data type and encoding mechanism for the revocation

handle are defined by the cryptographic mechanism used for revocation.

The revocation handle is automatically assigned a unique value by the issuance algorithm, possibly

involving a communication step with the Revocation Authority. Even though there are no syntactical

restrictions imposing this, presentation policies SHOULD NOT request to reveal the value of the

revocation handle, as doing so enables Verifiers to link presentations tokens generated with the same

credential. If necessary, inspection can be used to only reveal the value of the revocation handle under

specific circumstances.

/abc:CredentialSpecification/abc:SpecificationUID

This element contains a URI that uniquely identifies the credential specification.

/abc:CredentialSpecification/abc:FriendlyCredentialName

This optional element provides a friendly textual name for the credential. The content of this element

MUST be localized in a specific language.

/abc:CredentialSpecification/abc:FriendlyCredentialName/@lang

A required language identifier, using the language codes specified in [RFC 3066], in which the content

of abc:FriendlyCredentialName element have been localized.

/abc:CredentialSpecification/abc:DefaultImageReference

This optional element contains a reference to the default image for the credential issued according to

this credential specification can be obtained.

When implementing a Privacy-ABC system, downloading images from the identity providers

should be handled carefully. The reference to the external image resource must not be used

every time the credential is presented. To avoid linkability when using the credential, the

corresponding image must be downloaded and stored locally at the user’s side during the

issuance.

/abc:CredentialSpecification/abc:AttributeDescriptions

This element contains the descriptions of the attributes issued using this specification, encoded in

order in the n child elements. It is empty if n=0, i.e., if abc:AttributeDescriptions has no child

elements.

…/abc:AttributeDescriptions/abc:AttributeDescription

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 34 of 94 Public Final version 1.0

This element contains the description of one credential attribute.

…/abc:AttributeDescriptions/abc:AttributeDescription/@MaxLength

This attribute specifies the maximal length in bits of the integers to which attribute values are mapped

using the encoding function. The keylength of any Issuer Parameters used to issue credentials adhering

to this credential specification must be large enough so that attributes of the bitlength specified here

can be supported. It is up to each specific credential mechanism to describe which keylength supports

which attribute bitlength.

…/abc:AttributeDescriptions/abc:AttributeDescription/@Type

This attribute contains the unique identifier of an attribute type encoded in credentials adhering to this

specification. The attribute type is a URI, to which a semantic is associated by the definition of the

attribute type. The definition of attribute types is outside the scope of this document; we refer to

Section 7.5 in [IMI1.0] for examples. The attribute type (e.g., http://example.com/firstname)

is not to be confused with the data type (e.g., xs:string) that is specified by the DataType attribute.

…/abc:AttributeDescriptions/abc:AttributeDescription/@DataType

This attribute contains the data type of the credential attribute. The supported attribute data types are

the following subset of XML Schema data types. We refer to the XML Schema specification

(http://www.w3.org/TR/xmlschema-2) for more information on these data types.

 http://www.w3.org/2001/XMLSchema#string

 http://www.w3.org/2001/XMLSchema#anyURI

 http://www.w3.org/2001/XMLSchema#date

 http://www.w3.org/2001/XMLSchema#time

 http://www.w3.org/2001/XMLSchema#dateTime

 http://www.w3.org/2001/XMLSchema#integer

 http://www.w3.org/2001/XMLSchema#boolean

When specifying values for attributes of these types, the following additional restrictions must be

adhered to:

 Values of type xs:date MUST NOT contain a timezone

 Values of type xs:time MUST NOT contain a timezone

 Values of type xs:dateTime MUST contain a timezone

…/abc:AttributeDescriptions/abc:AttributeDescription/@Encoding

To be embedded in a Privacy-ABC, credential attribute values must typically be mapped to integers of

a fixed length indicated by the AttributeDescription/@MaxLength attribute. The Encoding

XML attribute specifies how the value of this credential attribute is mapped to such an integer.

Each data type has one or more possible encoding algorithms. The encoding used may influence which

values can be encoded, whether inspection can be used for this attribute, and which predicates can be

proved over the attribute values (see Section 4.4.1). In order to apply a predicate over multiple

credential attributes, the credential attributes MUST have the same encoding.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 35 of 94 Public Final version 1.0

The following is a list of supported encodings and their respective properties. Recommendations for

typical usage are included as comments.

 Encoding: urn:abc4trust:1.0:encoding:string:sha-256

Data type: http://www.w3.org/2001/XMLSchema#string

Restrictions: none

Inspectable: no (hash value only)

Supported predicates:

urn:oasis:names:tc:xacml:1.0:function:string-equal

urn:abc4trust:1.0:function:string-not-equal

Comments: Best suited for strings of arbitrary lengths that are unlikely to be used for

inspection.

 Encoding: urn:abc4trust:1.0:encoding:string:utf-8

Data type: http://www.w3.org/2001/XMLSchema#string

Restrictions: the UTF-8 encoded string must be shorter than @MaxLength – 8 bits or

@MaxLength/8 – 1 bytes

Inspectable: yes

Supported predicates:

urn:oasis:names:tc:xacml:1.0:function:string-equal

urn:abc4trust:1.0:function:string-not-equal

Comments: Best suited for short strings where the possibility to use inspection should be kept

open. For long strings that are likely to require inspection, please consider splitting up the

attribute into multiple attributes with this encoding.

 Encoding: urn:abc4trust:1.0:encoding:string:prime

Data type: http://www.w3.org/2001/XMLSchema#string

Restrictions: Can only be used for attributes where the value range is restricted by a list of

…/abc:AttributeDescription/abc:AllowedValue elements.

Inspectable: yes

Supported predicates:

urn:oasis:names:tc:xacml:1.0:function:string-equal

urn:abc4trust:1.0:function:string-not-equal

urn:abc4trust:1.0:function:string-equal-one-of

Comments: Best choice for attributes with a limited value range where presentation policies

are likely to request showing that the attribute value is one of a given list of strings without

revealing the exact value.

 Encoding: urn:abc4trust:1.0:encoding:anyUri:sha-256

Data type: http://www.w3.org/2001/XMLSchema#anyURI

Restrictions: none

Inspectable: no (hash value only)

Supported predicates:

urn:oasis:names:tc:xacml:1.0:function:anyURI-equal

urn:abc4trust:1.0:function:anyURI-not-equal

Comments: Best suited for URIs of arbitrary lengths that are unlikely to be used for

inspection.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 36 of 94 Public Final version 1.0

 Encoding: urn:abc4trust:1.0:encoding:anyUri:utf-8

Data type: http://www.w3.org/2001/XMLSchema#anyURI

Restrictions: shorter than @MaxLength bytes

Inspectable: yes

Supported predicates:

urn:oasis:names:tc:xacml:1.0:function:anyURI-equal

urn:abc4trust:1.0:function:anyURI-not-equal

Comments: Best suited for short URIs where the possibility to use inspection should be kept

open. For long URIs that are likely to require inspection, please consider splitting up the

attribute into multiple attributes with this encoding.

 Encoding: urn:abc4trust:1.0:encoding:anyURI:prime

Data type: http://www.w3.org/2001/XMLSchema#string

Restrictions: Can only be used for attributes where the value range is restricted by a list of

…/abc:AttributeDescription/abc:AllowedValue elements.

Inspectable: yes

Supported predicates:

urn:oasis:names:tc:xacml:1.0:function:anyURI-equal

urn:abc4trust:1.0:function:anyURI-not-equal

urn:abc4trust:1.0:function:anyURI-equal-one-of

Comments: Best choice for attributes with a limited value range where presentation policies

are likely to request showing that the attribute value is one of a given list of URIs without

revealing the exact value.

 Encoding: urn:abc4trust:1.0:encoding:dateTime:unix:signed

Data type: http://www.w3.org/2001/XMLSchema#dateTime

Restrictions: none

Inspectable: yes

Supported predicates:

urn:oasis:names:tc:xacml:1.0:function:dateTime-equal

urn:oasis:names:tc:xacml:1.0:function:dateTime-greater-than

urn:oasis:names:tc:xacml:1.0:function:dateTime-greater-than-or-equal

urn:oasis:names:tc:xacml:1.0:function:dateTime-less-than

urn:oasis:names:tc:xacml:1.0:function:dateTime-less-than-or-equal

urn:abc4trust:1.0:function:dateTime-not-equal

Comments: Good default choice for times that can be far in the past and/or future. Greater-

than and less-than predicates may be slightly less efficient using this encoding.

 Encoding: urn:abc4trust:1.0:encoding:dateTime:unix:unsigned

Data type: http://www.w3.org/2001/XMLSchema#dateTime

Restrictions: since 1970

Inspectable: yes

Supported predicates:

urn:oasis:names:tc:xacml:1.0:function:dateTime-equal

urn:oasis:names:tc:xacml:1.0:function:dateTime-greater-than

urn:oasis:names:tc:xacml:1.0:function:dateTime-greater-than-or-equal

urn:oasis:names:tc:xacml:1.0:function:dateTime-less-than

urn:oasis:names:tc:xacml:1.0:function:dateTime-less-than-or-equal

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 37 of 94 Public Final version 1.0

urn:abc4trust:1.0:function:dateTime-not-equal

Comments: Best choice for times after 1970 that are likely to be used in combination with

greather-than or less-than predicates.

 Encoding: urn:abc4trust:1.0:encoding:dateTime:prime

Data type: http://www.w3.org/2001/XMLSchema#dateTime

Restrictions: Can only be used for attributes where the value range is restricted by a list of

…/abc:AttributeDescription/abc:AllowedValue elements.

Inspectable: yes

Supported predicates:

urn:oasis:names:tc:xacml:1.0:function:dateTime-equal

urn:abc4trust:1.0:function:dateTime-not-equal

urn:abc4trust:1.0:function:dateTime-equal-one of

Comments: Best choice for attributes with a limited value range where presentation policies

are likely to request showing that the attribute value is one of a given list of times without

revealing the exact value.

 Encoding: urn:abc4trust:1.0:encoding:date:unix:signed

Data type: http://www.w3.org/2001/XMLSchema#date

Restrictions: none

Inspectable: yes

Supported predicates:

urn:oasis:names:tc:xacml:1.0:function:date-equal

urn:oasis:names:tc:xacml:1.0:function:date-greater-than

urn:oasis:names:tc:xacml:1.0:function:date-greater-than-or-equal

urn:oasis:names:tc:xacml:1.0:function:date-less-than

urn:oasis:names:tc:xacml:1.0:function:date-less-than-or-equal

urn:abc4trust:1.0:function:date-not-equal

Comments: Good default choice for dates that can be far in the past and/or future. Greater-

than and less-than predicates may be less efficient using this encoding.

 Encoding: urn:abc4trust:1.0:encoding:date:unix:unsigned

Data type: http://www.w3.org/2001/XMLSchema#date

Restrictions: since 1970

Inspectable: yes

Supported predicates:

urn:oasis:names:tc:xacml:1.0:function:date-equal

urn:oasis:names:tc:xacml:1.0:function:date-greater-than

urn:oasis:names:tc:xacml:1.0:function:date-greater-than-or-equal

urn:oasis:names:tc:xacml:1.0:function:date-less-than

urn:oasis:names:tc:xacml:1.0:function:date-less-than-or-equal

urn:abc4trust:1.0:function:date-not-equal

Comments: Best choice for times after 1970 that are likely to be used in combination with

greather-than or less-than predicates.

 Encoding: urn:abc4trust:1.0:encoding:date:since1870:unsigned

Data type: http://www.w3.org/2001/XMLSchema#date

Restrictions: since 1870

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 38 of 94 Public Final version 1.0

Inspectable: yes

Supported predicates:

urn:oasis:names:tc:xacml:1.0:function:date-equal

urn:oasis:names:tc:xacml:1.0:function:date-greater-than

urn:oasis:names:tc:xacml:1.0:function:date-greater-than-or-equal

urn:oasis:names:tc:xacml:1.0:function:date-less-than

urn:oasis:names:tc:xacml:1.0:function:date-less-than-or-equal

urn:abc4trust:1.0:function:date-not-equal

Comments: Best choice for birth dates, which are likely to fall after 1870 but are likely to

require efficient greather-than or less-than predicates.

 Encoding: urn:abc4trust:1.0:encoding:date:since2010:unsigned

Data type: http://www.w3.org/2001/XMLSchema#date

Restrictions: since 2010

Inspectable: yes

Supported predicates:

urn:oasis:names:tc:xacml:1.0:function:date-equal

urn:oasis:names:tc:xacml:1.0:function:date-greater-than

urn:oasis:names:tc:xacml:1.0:function:date-greater-than-or-equal

urn:oasis:names:tc:xacml:1.0:function:date-less-than

urn:oasis:names:tc:xacml:1.0:function:date-less-than-or-equal

urn:abc4trust:1.0:function:date-not-equal

Comments: Best choice for expiration dates, which are likely to fall after 2010 but are likely

to require efficient greather-than or less-than predicates.

 Encoding: urn:abc4trust:1.0:encoding:date:prime

Data type: http://www.w3.org/2001/XMLSchema#date

Restrictions: Can only be used for attributes where the value range is restricted by a list of

…/abc:AttributeDescription/abc:AllowedValue elements.

Inspectable: yes

Supported predicates:

urn:oasis:names:tc:xacml:1.0:function:date-equal

urn:abc4trust:1.0:function:date-not-equal

urn:abc4trust:1.0:function:date-equal-one of

Comments: Best choice for attributes with a limited value range where presentation policies

are likely to request showing that the attribute value is one of a given list of dates without

revealing the exact value.

 Encoding: urn:abc4trust:1.0:encoding:boolean:unsigned

Data type: http://www.w3.org/2001/XMLSchema#boolean

Restrictions: none

Inspectable: yes

Supported predicates:

urn:oasis:names:tc:xacml:1.0:function:boolean-equal

urn:abc4trust:1.0:function:boolean-not-equal

 Encoding: urn:abc4trust:1.0:encoding:integer:unsigned

Data type: http://www.w3.org/2001/XMLSchema#integer

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 39 of 94 Public Final version 1.0

Restrictions: positive (including zero)

Inspectable: yes

Supported predicates:

urn:oasis:names:tc:xacml:1.0:function:integer-equal

urn:oasis:names:tc:xacml:1.0:function:integer-greater-than

urn:oasis:names:tc:xacml:1.0:function:integer-greater-than-or-equal

urn:oasis:names:tc:xacml:1.0:function:integer-less-than

urn:oasis:names:tc:xacml:1.0:function:integer-less-than-or-equal

urn:abc4trust:1.0:function:integer-not-equal

Comments: Best for integers that cannot take negative values.

 Encoding: urn:abc4trust:1.0:encoding:integer:signed

Data type: http://www.w3.org/2001/XMLSchema#integer

Restrictions: none

Inspectable: yes

Supported predicates:

urn:oasis:names:tc:xacml:1.0:function:integer-equal

urn:oasis:names:tc:xacml:1.0:function:integer-greater-than

urn:oasis:names:tc:xacml:1.0:function:integer-greater-than-or-equal

urn:oasis:names:tc:xacml:1.0:function:integer-less-than

urn:oasis:names:tc:xacml:1.0:function:integer-less-than-or-equal

urn:abc4trust:1.0:function:integer-not-equal

Comments: Best choice for integers that can have positive or negative values.

 Encoding: urn:abc4trust:1.0:encoding:integer:prime

Data type: http://www.w3.org/2001/XMLSchema#integer

Restrictions: Can only be used for attributes where the value range is restricted by a list of

…/abc:AttributeDescription/abc:AllowedValue elements.

Inspectable: yes

Supported predicates:

urn:oasis:names:tc:xacml:1.0:function:integer-equal

urn:abc4trust:1.0:function:integer-not-equal

urn:abc4trust:1.0:function:integer-equal-one of

Comments: Best choice for attributes with a limited value range where presentation policies

are likely to request showing that the attribute value is one of a given list of integers without

revealing the exact value.

…/abc:AttributeDescriptions/abc:AttributeDescription/abc:FriendlyAttributeN

ame

This optional element provides a friendly textual name for the attribute in the credential. The content

of this element MUST be localized in a specific language.

…/abc:AttributeDescriptions/abc:AttributeDescription/abc:FriendlyAttributeN

ame/@xml:lang

A required language identifier, using the language codes specified in [RFC 3066], in which the content

of abc:FriendlyAttributeName element have been localized.

…/abc:AttributeDescriptions/abc:AttributeDescription/abc:AllowedValue

When present, a list of AllowedValue elements restricts the range of the value of this credential

attribute to the specified list of values. Each AllowedValue element contains one possible value of

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 40 of 94 Public Final version 1.0

the credential attribute. If abc:AttributeDescription contains one or more

abc:AllowedValue elements, the actual value of the attribute of an issued credential MUST be from

the specified set of allowed values. The contents of the abc:AllowedValue elements MUST be of

the data type specified by the abc:AttributeDescription/@DataType attribute of the parent

abc:AttributeDescription element.

4.2.2 Issuer Parameters

In order to issue credentials, the issuer must specify system parameters, and generate a key pair

consisting of a secret issuing key and a public verification key. The issuer publishes its public

parameters using the artifact described below. How this artifact is protected (authenticated) is

application specific; e.g., it could be included in a certificate signed by a certification authority, or

could be provided as part of some metadata retrievable from a trusted source.

<abc:IssuerParameters Version=”1.0”>

 <abc:ParametersUID>xs:anyURI</abc:ParametersUID>

 <abc:FriendlyIssuerDescription lang=”xs:language”>

 xs:string

 </abc:FriendlyIssuerDescription>*

 <abc:AlgorithmID>xs:anyURI</abc:AlgorithmID>

 <abc:SystemParameters>…</abc:SystemParameters>

 <abc:CredentialSpecUID>xs:anyURI</abc:CredentialSpecUID>

 <abc:HashAlgorithm>xs:anyUID</abc:HashAlgorithm>

 <abc:CryptoParams>…</abc:CryptoParams>

 <abc:KeyBindingInfo>…</abc:KeyBindingInfo>?

 <abc:RevocationParametersUID>…</abc:RevocationParametersUID>?

</abc:IssuerParameters>

The following describes the attributes and elements listed in the schema outlined above:

/abc:IssuerParameters

This element contains an issuer’s public parameters.

/abc:IssuerParameters/@Version

This attribute indicates the version of this specification. The value MUST be “1.0”.

/abc:IssuerParameters/abc:ParametersUID

This element contains a URI that uniquely identifies the public issuer parameters.

/abc:IssuerParameters/abc:FriendlyIssuerDescription

This optional element provides a friendly textual description of the issuer. The content of this element

MUST be localized in a specific language.

/abc:IssuerParameters/abc:FriendlyIssuerDescription/@lang

A required language identifier, using the language codes specified in [RFC 3066], in which the content

of abc:FriendlyIssuerDescription element have been localized.

/abc:IssuerParameters/abc:AlgorithmID

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 41 of 94 Public Final version 1.0

This element identifies the algorithm of the public issuer parameters. The algorithm URIs

urn:abc4trust:1.0:algorithm:idemix for Identity Mixer and

urn:abc4trust:1.0:algorithm:uprove for U-Prove MUST be supported; other algorithms

MAY be supported.

/abc:IssuerParameters/abc:SystemParameters

This element contains the cryptographic system parameters that can be shared among many issuers.

The AlgorithmID element determines how to parse this element.

/abc:IssuerParameters/abc:CredentialSpecUID

This element contains a URI that uniquely identifies the credential type that is issued by the issuer.

/abc:IssuerParameters/abc:HashAlgorithm

This element specifies the hash algorithm that is to be used in the generation of the presentation tokens

derived from credentials issued under these parameters. This hash algorithm is not to be confused with

the encoding algorithm that maps attribute values to integers and may also specify a hash function to

apply to long attribute values. The hash algorithm SHA-256 with identifier

urn:abc4trust:1.0:hashalgorithm:sha-256 MUST be supported; other algorithms MAY be

supported.

/abc:IssuerParameters/abc:CryptoParams

This element describes the set of public cryptographic parameters needed to issue, use, and verify

credentials. The content of this element is defined in an external profile based on the value of the

abc:AlgorithmID element.

/abc:IssuerParameters/abc:KeyBindingInfo

This optional element contains additional cryptographic information for when these Issuer Parameters

are used to issue credentials with key binding. The content of this element is technology-specific.

/abc:IssuerParameters/abc:RevocationAuthorityParametersUID

This optional element contains the parameters identifier of a revocation authority that is responsible

for revoking credentials issued under these issuer parameters. The parameters referred to here are

determined by the issuer (i.e., issuer-driven revocation), meaning that any presentation token involving

credentials issued under these issuer parameters MUST be checked against the latest revocation

information associated to the revocation parameters referenced by this element.

4.2.3 Inspector Public Key

In order to decrypt encrypted attributes, an inspector must generate a key pair consisting of a secret

decryption key and a public encryption key. The inspector publishes its public key using the artifact

described below. How this artifact is protected (authenticated) is application specific; e.g., it could be

included in a certificate signed by a certification authority, or could be provided as part of some

metadata retrievable from a trusted source.

<abc:InspectorPublicKey Version=”1.0”>

 <abc:PublicKeyUID>xs:anyURI</abc:PublicKeyUID>

 <abc:AlgorithmID>xs:anyURI</abc:AlgorithmID>

 <abc:FriendlyInspectorDescription lang=”xs:language”>

 xs:string

 </abc:FriendlyInspectorDescription>*

 <abc:CryptoParams>…</abc:CryptoParams>

</abc:InspectorPublicKey>

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 42 of 94 Public Final version 1.0

The following describes the attributes and elements listed in the schema outlined above:

/abc:InspectorPublicKey

This element contains an inspector's public key.

/abc:InspectorPublicKey/@Version

This attribute indicates the version of this specification. The value MUST be “1.0”.

/abc:InspectorPublicKey/abc:PublicKeyUID

This element contains a URI that uniquely identifies the public key.

/abc:InspectorPublicKey/abc:AlgorithmID

This element identifies the algorithm of the public key. The Camenisch-Shoup inspection algorithm

[CS03] with identifier urn:abc4trust:1.0:inspectionalgorithm:camenisch-shoup03

MUST be supported; other algorithms MAY be supported.

/abc:InspectorPublicKey/abc:FriendlyInspectorDescription

This optional element provides a friendly textual description for the inspector’s public key. The

content of this element MUST be localized in a specific language.

/abc:InspectorPublicKey/abc:FriendlyInspectorDescription/@lang

A required language identifier, using the language codes specified in [RFC 3066], in which the content

of abc:FriendlyInspectorDescription element have been localized.

/abc:InspectorPublicKey/abc:CryptoParams

This element describes the set of public cryptographic parameters needed to issue, use, and verify

credentials. The content of this element is defined in an external profile based on the value of the

abc:AlgorithmID element.

4.3 Revocation

A Revocation Authority maintains information about valid and, in particular, revoked credentials. To

do so, it first generates public parameters and possibly corresponding secret parameters. It publishes

its public parameters together with a description of the particular revocation method that is used and a

reference to the location where the most current revocation information will be published.

Some revocation mechanisms require users to obtain an additional piece of information called non-

revocation evidence in order to be able to prove that their credential is still valid.

The different revocation mechanisms vary quite strongly in how the non-revocation evidence is

created and maintained. Depending on the specific mechanism, the non-revocation evidence

 may be the same for all users, or may be different for each user and/or each issued credential;

 may be sensitive information that the user needs to keep strictly secret, or may be leaked to

other participants without further harm;

 may be first created during the issuance of the credential, during the first usage (presentation)

of the credential, or at any time between issuance and first usage;

 may have to be kept up-to-date with the non-revocation information, or may remain the same

for the lifetime of the credential.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 43 of 94 Public Final version 1.0

The Revocation Authority can also include references to the locations where the users can obtain the

information to create and to update their non-revocation evidence. Both the initialization of the non-

revocation evidence and the update may be multi-leg cryptographic protocols.

4.3.1 Revocation Authority Parameters

Each Revocation Authority generates and publishes its parameters at setup. The parameters are static,

i.e., they do not change over time as more credentials are revoked.

<abc:RevocationAuthorityParameters Version=”1.0”>

 <abc:ParametersUID>xs:anyURI</abc:ParametersUID>

 <abc:RevocationMechanism>xs:anyURI</abc:RevocationMechanism>

 <abc:RevocationInfoReference ReferenceType=”xs:anyURI”>

 …

</abc:RevocationInfoReference>?

 <abc:NonRevocationEvidenceReference ReferenceType=”xs:anyURI”>

 …

</abc:NonRevocationEvidenceReference>?

 <abc:NonRevocationEvidenceUpdateReference ReferenceType=”xs:anyURI”>

 …

</abc:NonRevocationEvidenceUpdateReference>?

<abc:CryptoParams>…</CryptoParams>?

</abc:RevocationAuthorityParameters>

/abc:RevocationAuthorityParameters

This element contains the public parameters of the Revocation Authority

/abc:RevocationAuthorityParameters/@Version

This attribute indicates the version of this specification. The value MUST be “1.0”.

/abc:RevocationAuthorityParameters/abc:ParametersUID

This element contains a unique identifier for these Revocation Authority parameters.

/abc:RevocationAuthorityParameters/RevocationMechanism

This attribute indicates the mechanism or algorithm used to revoke credentials. The list of supported

revocation mechanisms and their identifiers have not yet been defined.

/abc:RevocationAuthorityParameters/abc:RevocationInfoReference

This optional element contains a reference to the endpoint where the most current public revocation

information corresponding to these parameters can be obtained.

/abc:RevocationAuthorityParameters/abc:NonRevocationEvidenceReference

This optional element contains a reference to the endpoint with the information about how to obtain

the (possibly private) user-specific non-revocation evidence object.

/abc:RevocationAuthorityParameters/abc:NonRevocationEvidenceUpdateReference

This optional element contains a reference to the endpoint the most current information for updating

the non-revocation evidence can be obtained.

/abc:RevocationAuthorityParameters/abc:RevocationInfoReference/@ReferenceTy

pe

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 44 of 94 Public Final version 1.0

This attribute indicates the type of reference to the revocation information endpoint.

/abc:RevocationAuthorityParameters/abc:CryptoParams

This element describes the set of public cryptographic parameters that are needed to verify the

Revocation Information. The content of this element is defined in an external profile based on the

value of the abc:RevocationMechanism element.

4.3.2 Revocation Information

A Revocation Authority regularly publishes the most recent revocation information, allowing Users to

prove and Verifiers to ensure that the credentials used to generate a presentation token have not been

revoked. Contrary to the Revocation Authority parameters, the revocation information changes over

time, e.g., at regular time intervals, or whenever a new credential is revoked.

The Revocation Authority publishes the revocation information using the artifact described below.

How this artifact is protected (authenticated) is application specific; e.g., it could be included in a

XML-signed document or provided as part of some metadata retrievable from a trusted source.

<abc:RevocationInformation Version=”1.0”>

 <abc:InformationUID>xs:anyURI</abc:InformationUID>

<abc:RevocationAuthorityParametersUID>

 xs:anyURI

 </abc:RevocationAuthorityParametersUID>

<abc:Created>xs:dateTime</abc:Created>?

<abc:Expires>xs:dateTime</abc:Expires>?

 <abc:CryptoParams>…</abc:CryptoParams>

</abc:RevocationInformation>

The following describes the attributes and elements listed in the schema outlined above:

/abc:RevocationInformation

This element contains the current revocation information, as published by the Revocation Authority.

At each update of the revocation information, a new abc:RevocationInformation element is

generated.

/abc:RevocationInformation/@Version

This attribute indicates the version of this specification. The value MUST be “1.0”.

/abc:RevocationInformation/abc:InformationUID

This element contains the unique identifier of the revocation information. This identifier is different

for each version of the revocation information, i.e., a new URI is used at every update.

/abc:RevocationInformation/abc:RevocationAuthorityUID

This element contains the identifier of the parameters of the revocation authority that published the

revocation information.

/abc:RevocationInformation/abc:Created

This optional element contains the date and time when the revocation information was updated or first

published.

/abc:RevocationInformation/abc:Expires

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 45 of 94 Public Final version 1.0

This optional element contains the date and time until when the revocation information is valid.

/abc:IssuerParameters/abc:CryptoParams

This element describes the set of public cryptographic parameters needed to verify whether a

credential is still valid. (The content of this element is defined in an external profile based on the value

of the @RevocationMechanism attribute specified in the referenced abc:Revocation

AuthorityParameters element)

4.3.3 Non-Revocation Evidence

The exact details of how and when the non-revocation evidence is created and updated vary greatly

among the different revocation mechanisms. We therefore simply define an artifact that acts as a

wrapper for a message in a (possibly multi-legged) evidence creation or update protocol. These

messages are sent to and received as a response from the evidence creation and update endpoints

specified in the Revocation Authority parameters.

<abc:RevocationMessage Context=”…”>

<abc:RevocationAuthorityParametersUID>

 xs:anyURI

 </abc:RevocationAuthorityParametersUID>

 <abc:CryptoParams>…</abc:CryptoParams>

</abc:RevocationMessage>

The following describes the attributes and elements listed in the schema outlined above:

/abc:RevocationMessage/@Context

This attribute contains a unique identifier for this protocol session, so that the different flows in the

protocol session can be linked together. The request MUST contain a Context attribute. The revocation

authority MUST reject requests with context values already in use.

/abc:RevocationMessage/abc:RevocationAuthorityParametersUID

This element contains the identifier of the parameters of the revocation authority that creates the non-

revocation evidence information.

/abc:RevocationMessage/abc:CryptoParams

This element describes the mechanism-specific (cryptographic) parameters needed to obtain the non-

revocation evidence information for building or updating the evidence.

4.4 Presentation

The user agent can create presentation tokens using one or more credentials in its possession. The

verifier can optionally insist that all credentials used to generate the token are bound to the same user

(i.e., to the same user secret) or device.

In a typical ABC presentation interaction, the user first requests access to a protected resource, upon

which the verifier sends a presentation policy that describes which credentials the user should present

to obtain access. The user agent then checks whether it has the necessary credentials to satisfy the

verifier’s presentation policy, and if so, generates a presentation token containing the appropriate

cryptographic evidence.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 46 of 94 Public Final version 1.0

Upon receiving the presentation token, the verifier checks that the cryptographic evidence is valid for

the presented credentials and checks that the token satisfies the presentation policy. If both tests

succeed, it grants access to the resource.

4.4.1 Presentation Policy

The verifier’s policy describes the class of presentation tokens that it will accept. It is expressed by

means of a abc:PresentationPolicyAlternatives element, with the following schema:

<abc:PresentationPolicyAlternatives Version=”1.0”>

<abc:PresentationPolicy PolicyUID=”xs:anyURI”?>

 <abc:Message>

 <abc:Nonce>…</abc:Nonce>?

 <abc:FriendlyPolicyName lang=”xs:language”>

 xs:string

 </abc:FriendlyPolicyName>*

 <abc:FriendlyPolicyDescription lang=”xs:language”>

 xs:string

 </abc:FriendlyPolicyDescription>*

 <abc:ApplicationData>…</abc:ApplicationData>?

 </abc:Message>?

 <abc:Pseudonym Exclusive=”xs:boolean”? Scope=”xs:string”

 Established=”xs:boolean”? Alias=”xs:anyURI”?

 SameKeyBindingAs=”xs:anyURI”? />*

 <abc:Credential Alias=”xs:anyURI”? SameKeyBindingAs=”xs:anyURI”?>

 <abc:CredentialSpecAlternatives>

 <abc:CredentialSpecUID>…</abc:CredentialSpecUID>+

 </abc:CredentialSpecAlternatives>

 <abc:IssuerAlternatives>

 <abc:IssuerParametersUID

 RevocationInformationUID=”xs:anyURI”?>

 …

 </abc:IssuerParametersUID>+

 </abc:IssuerAlternatives>

 <abc:DisclosedAttribute AttributeType=”xs:anyURI”

 DataHandlingPolicy=”xs:anyURI”?>

 (<abc:InspectorAlternatives>

 <abc:InspectorPublicKeyUID>…</abc:InspectorPublicKeyUID>+

 </abc:InspectorAlternatives>

 <abc:InspectionGrounds>…</abc:InspectionGrounds>

)?

 </abc:DisclosedAttribute>*

 </abc:Credential>*

 <abc:VerifierDrivenRevocation>

 <abc:RevocationParametersUID>…</abc:RevocationParametersUID>

 <abc:Attribute CredentialAlias=”xs:anyURI”

 AttributeType=”xs:anyURI”>+

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 47 of 94 Public Final version 1.0

 </abc:VerifierDrivenRevocation>*

 <abc:AttributePredicate Function=”xs:anyURI”>

 (<abc:Attribute CredentialAlias=”xs:anyURI”

 AttributeType=”xs:anyURI” DataHandlingPolicy=”xs:anyURI”?/>

 |

 <abc:ConstantValue>…</abc:ConstantValue>

)+

 </abc:AttributePredicate>*

 </abc:PresentationPolicy>+

</abc:PresentationPolicyAlternatives>

The following describes the attributes and elements listed in the schema outlined above:

/abc:PresentationPolicyAlternatives

This element contains a presentation policy, which may contain multiple policy alternatives as child

elements. The presented token must satisfy at least one of the specified policies.

/abc:PresentationPolicyAlternatives/@Version

This attribute indicates the token version number; it MUST be “1.0”.

/abc:PresentationPolicyAlternatives/abc:PresentationPolicy

This element contains one policy alternative.

…/abc:PresentationPolicy/@PolicyUID

This attribute assigns a unique identifier to this presentation policy that can be referenced from

presentation tokens that satisfy the policy.

/abc:PresentationPolicyAlternatives/abc:PresentationPolicy/abc:Message

This optional element specifies a message to be authenticated (signed) by the private key of each

credential in the token.

…/abc:PresentationPolicy/abc:Message/abc:Nonce

This optional element contains a random nonce.

…/abc:PresentationPolicy/abc:Message/abc:FriendlyPolicyName

This optional element provides a friendly textual name for the policy. The content of this element

MUST be localized in a specific language.

…/abc:PresentationPolicy/abc:Message/abc:FriendlyPolicyName/@lang

A required language identifier, using the language codes specified in [RFC 3066], in which the content

of abc:FriendlyPolicyName element have been localized.

…/abc:PresentationPolicy/abc:Message/abc:FriendlyPolicyDescription

This optional element provides a friendly textual description for the policy. The content of this

element MUST be localized in a specific language.

…/abc:PresentationPolicy/abc:Message/abc:FriendlyPolicyDescription/@lang

A required language identifier, using the language codes specified in [RFC 3066], in which the content

of abc:FriendlyPolicyDescription element have been localized.

…/abc:PresentationPolicy/abc:Message/abc:ApplicationData

This optional element can contain any application-specific data. The contained data MAY be human

readable, depending on the application, and displayed to the user.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 48 of 94 Public Final version 1.0

/abc:PresentationPolicyAlternatives/abc:PresentationPolicy/abc:Pseudonym

When present, this optional element indicates that a pseudonym must be presented with the

presentation token. If this policy does not involve any credentials to be presented, then a verifiable

pseudonym must be presented. Otherwise, a certified pseudonym associated to the presented

credentials must be presented. See Section 2.4 for more information on pseudonyms.

…/abc:PresentationPolicy/abc:Pseudonym/@Scope

This attribute indicates a string to which the pseudonym is associated. The user agent is assumed to

maintain state information to keep track of which pseudonym it previously used for which scope.

There can be multiple verifiable or certified pseudonyms associated to the same scope string, but a

scope-exclusive pseudonym is guaranteed to be unique with respect to the scope string and the user

secret. In the former case, the scope string is merely a hint to the user agent which of its stored

pseudonyms can be reused in the presentation token, or to which scope string it should associate a

newly created pseudonym. In the latter case, the scope string uniquely determines the pseudonym that

needs to be used. The scope string MAY encode an identifier of the verifier and/or of the requested

resource. See Section 2.4 for more information on the use of pseudonyms.

…/abc:PresentationPolicy/abc:Pseudonym/@Exclusive

When present and set to true, this attribute indicates that a scope-exclusive pseudonym is to be

presented with the token. The value of the @Scope attribute determines the scope with respect to

which the pseudonym must be generated. See Section 2.4 for more information on scope-exclusive

pseudonyms.

…/abc:PresentationPolicy/abc:Pseudonym/@Established

When set to true, this attribute indicates that the pseudonym to be presented by the User must re-

authenticate under a pseudonym that was previously established with the Verifier. When set to false or

when not present, this attribute indicates that the User may establish a new pseudonym in the

presentation token.

…/abc:PresentationPolicy/abc:Pseudonym/@Alias

This optional attribute defines an alias for this pseudonym so that it can be referred to from other

pseudonyms or credentials to enforce same key binding, or, if this presentation token is part of an

issuance token, to support carrying over key binding to the newly issued credential. See the
/abc:IssuancePolicy/abc:CredentialTemplate/abc:UnknownAttributes

/abc:KeyBinding/abc:PseudonymInfo/@Alias element.

…/abc:PresentationPolicy/abc:Pseudonym/@SameKeyBindingAs

If present, this XML attribute contains an alias referring either to another Pseudonym element within

this policy, or to a Credential element for a credential with key binding. This indicates that the

current pseudonym and the referred pseudonym or credential have to be bound to the same key.

Insisting credentials to be bound to the same key limits users from sharing credentials.

The pseudonym or credential that is referred to does not have to refer back to this pseudonym. If the

referred to pseudonym or credential also has a SameKeyBindingAs attribute that refers to a third

pseudonym or credential, then all three pseudonyms/credentials must be bound to the same key. In

other words, SameKeyBindingAs induces a transitive relationship.

…/abc:PresentationPolicy/abc:Credential

This optional element specifies a credential that has to be used in the generation of the token. Omitting

this element may be useful, for example, when the user can obtain access by merely presenting an

existing verifiable pseudonym.

…/abc:PresentationPolicy/abc:Credential/@Alias

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 49 of 94 Public Final version 1.0

This optional attribute creates an alias for this credential to refer to attributes from this credential in

attribute predicates. See the …/abc:PresentationPolicy/abc:AttributePredicates element.

…/abc:PresentationPolicy/abc:Credential/@SameKeyBindingAs

If present, this XML attribute contains an alias referring either to a Pseudonym element within this

policy, or to another Credential element for a credential with key binding. This indicates that the

current credential and the referred pseudonym or credential have to be bound to the same key.

Insisting credentials to be bound to the same key limits users from sharing credentials.

The pseudonym or credential that is referred to does not have to refer back to this credential. If the

referred to pseudonym or credential also has a SameKeyBindingAs attribute that refers to a third

pseudonym or credential, then all three pseudonyms/credentials must be bound to the same key. In

other words, SameKeyBindingAs induces a transitive relationship.

…/abc:PresentationPolicy/abc:Credential/abc:CredentialSpecAlternatives

This element contains a list of credential specifications. The issued credential used to instantiate this

credential in the presentation token must adhere to one of the listed credential specifications.

…/abc:Credential/abc:CredentialSpecAlternatives/abc:CredentialSpecUID

This element contains one credential specification identifier that can be used to instantiate this

credential in the presentation token.

…/abc:Credential/abc:IssuerAlternatives

This element contains a list of identifiers for issuer parameters UID. The issued credential used to

instantiate this credential in the presentation token must be issued under one of the listed issuer

parameters.

…/abc:Credential/abc:IssuerAlternatives/abc:IssuerParametersUID

This element contains one issuer parameters identifier that is accepted for this credential in the

presentation token.

This specification defines two dedicated values for the issuer parameters:

 The value http://abc4trust.eu/wp2/issuerparameters/unsigned indicates that

the attribute values in this credential are self-claimed, without any form of authentication by

either an external issuer or the user herself.

 The value http://abc4trust.eu/wp2/issuerparameters/pseudonymously-

self-signed indicates that the attribute values in this credential are self-claimed and

signed under the pseudonym of the user provided in the same presentation token. This value

can only occur when the presentation policy contains a

/abc:PresentationPolicyAlternatives/abc:PresentationPolicy/abc:Pseud

onym element.

…/abc:IssuerAlternatives/abc:IssuerParametersUID/@RevocationInformationUID

If the issuer parameters referred to in this element specify an Issuer-driven Revocation Authority, i.e.,

if the referred abc:IssuerParameters element contains an abc:RevocationParametersUID

child element, then this optional XML attribute can indicate for which version of the revocation

information the presented token must be valid. By specifying the current revocation information

identifier in the presentation policy, the User does not have to get in touch with the Revocation

Authority to check whether her non-revocation evidence information is still up to date, thereby

avoiding a possible source of linkability.

…/abc:PresentationPolicy/abc:Credential//abc:DisclosedAttribute

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 50 of 94 Public Final version 1.0

This element specifies an attribute of this credential that has to be revealed in the presentation token,

either to the verifier itself, or to an external inspector.

Even though there are no syntactical restrictions imposing this, presentation policies SHOULD NOT

request to reveal the value of the revocation handle (with attribute type

http://abc4trust.eu/wp2/abcschemav1.0/revocationhandle), as doing so enables

Verifiers to link presentations tokens generated with the same credential. If necessary, inspection can

be used to only reveal the value of the revocation handle under specific circumstances.

…/abc:Credentials/abc:Credential/abc:DisclosedAttribute/@AttributeType

This attribute specifies the type of the credential attribute of which the value must be revealed in the

presentation token. If multiple credential specifications are allowed for this credential (i.e., if multiple

abc:CredentialSpecUID elements are listed in the abc:CredentialSpecAlternatives child

element of the ancestor abc:Credential element), then the specified attribute type MUST occur in

all listed credential specifications.

For each credential and each attribute type, there MUST be at most one abc:DisclosedAttribute

element without abc:InspectorAlternatives child element. Likewise, for each credential and

each attribute type, there MUST be at most one abc:DisclosedAttribute element with the same

abc:InspectionGrounds child element.

…/abc:Credential/abc:DisclosedAttribute/@DataHandlingPolicy

This XML attribute can be used to refer to an external data handling policy describing how the

Verifier will treat the revealed attribute value once it is received. The data handling policy may be

human-readable and/or machine-readable. The specification of a data handling policy schema is

outside of the scope of this document.

…/abc:Credential/abc:DisclosedAttribute/abc:InspectorAlternatives

This optional element lists a number of inspector public key identifiers. When present, this element

indicates that the value of this attribute does not have to be revealed to the verifier, but must be

encrypted under one of the listed inspector public keys. See Section 2.6 for more details on revealing

attributes to an inspector.

…/abc:DisclosedAttribute/abc:InspectorAlternatives/abc:InspectorPublicKeyUI

D

This element contains one identifier of an inspector public key under which the attribute value can be

encrypted.

…/abc:Credential/abc:DisclosedAttribute/abc:InspectionGrounds

This optional element contains a string describing the valid grounds or circumstances under which the

inspector can be asked to decrypt the attribute value or circumstances. This element must be present

whenever a sibling abc:InspectorAlternatives element is present. See Section 2.6 for more

details on revealing attributes to an inspector.

…/abc:PresentationPolicy/abc:VerifierDrivenRevocation

This optional element specifies all parameters for checking if a (set of) attribute value(s) from the

specified credentials was not revoked using verifier-driven revocation.

Verifier-driven revocation can be based on combinations of attributes from a set of different

credentials, in which case there will be multiple abc:Attribute elements per one

abc:VerifierDrivenRevocation element. Then the User has to prove that a disjunctive

combination of these attribute values was not revoked with respect to the specified

abc:RevocationParametersUID.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 51 of 94 Public Final version 1.0

…/abc:PresentationPolicy/abc:VerifierDrivenRevocation/abc:RevocationParamet

ersUID

This element contains the UID of the revocation authority parameters. The User needs to provide a

proof that a following (set of) attribute value(s) was not revoked according to the specified set of

parameters.

…/abc:PresentationPolicy/abc:VerifierDrivenRevocation/abc:Attribute

This element specifies a credential attribute that is used for verifier-driven revocation.

…/abc:PresentationPolicy/abc:VerifierDrivenRevocation/abc:Attribute/@Creden

tialAlias

This attribute specifies the alias of the credential from which the attribute is used. The specified value

MUST also occur as an Alias attribute in an abc:Credential element within this

abc:PresentationPolicy.

…/abc:PresentationPolicy/abc:VerifierDrivenRevocation/abc:Attribute/@Attrib

uteType

This attribute refers to the attribute within the credential that is to be used for verifier driven-

revocation.

…/abc:PresentationPolicy/abc:AttributePredicate

This element specifies a predicate that must hold over the attribute values. To satisfy the policy, the

presentation token must for each of the listed predicates either prove (in a data-minimizing way) that

the credential attributes satisfy the specified predicate, or must reveal the value of the involved

attribute(s) so that the verifier can check whether the predicate is satisfied. The child elements are the

ordered list of arguments of the predicate.

…/abc:PresentationPolicy/abc:AttributePredicate/@Function

This attribute specifies the boolean function for this predicate. See Section 4.4.34 for a list of

supported functions and their implications on the list of arguments in the child elements. Note that not

all predicate functions can be used for all attributes: the allowed predicate functions depend on the

data type and on the chosen encoding of the credential attributes. See Section 4.2.1 for a list of which

predicates can be used in combination with which data types and encodings.

…/abc:AttributePredicate/abc:Attribute

This element specifies a reference to a credential attribute that is to be used as an argument of the

predicate.

…/abc:AttributePredicate/abc:Attribute/@CredentialAlias

This attribute specifies the alias of the credential from which the attribute must be used. The specified

alias MUST also occur as an Alias attribute in an abc:Credential element within the ancestor

abc:PresentationPolicy element.

…/abc:AttributePredicate/abc:Attribute/@AttributeType

This attribute refers to the attribute within the credential that is to be used as an argument in the

predicate.

…/abc:AttributePredicate/abc:Attribute/@DataHandlingPolicy

This XML attribute can be used to refer to an external data handling policy describing how the

Verifier will treat the information that the attribute value satisfies the specified predicate. The data

handling policy may be human-readable and/or machine-readable. The specification of a data handling

policy schema is outside of the scope of this document.

…/abc:AttributePredicate/abc:ConstantValue

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 52 of 94 Public Final version 1.0

This element contains a constant value that is to be used as an argument in the predicate. The data type

of the argument depends on the function of the predicate. We refer to Section 4.5.3 for a list of

supported functions and the data types of their arguments.

4.4.2 Presentation Token

The presentation of one or multiple credentials results in a presentation token that is sent to the

verifier. The syntax for the element is:

<abc:PresentationToken Version=”1.0”>

 <abc:PresentationTokenDescription PolicyUID=”xs:anyURI”

 TokenUID=”xs:anyURI”?>

 <abc:Message>

 <abc:Nonce>…</abc:Nonce>?

 <abc:FriendlyPolicyName lang=”xs:language”>

 xs:string

 </abc:FriendlyPolicyName>*

 <abc:FriendlyPolicyDescription lang=”xs:language”>

 xs:string

 </abc:FriendlyPolicyDescription>*

 <abc:ApplicationData>…</abc:ApplicationData>?

 </abc:Message>?

 <abc:Pseudonym Scope=”xs:string”? Exclusive=”xs:boolean”?

 Alias=”xs:anyURI”? SameKeyBindingAs=”xs:anyURI”?>

 <abc:PseudonymValue>…</abc:PseudonymValue>

 </abc:Pseudonym>*

 <abc:Credential Alias=”xs:anyURI”? SameKeyBindingAs=”xs:anyURI”?>

 <abc:CredentialSpecUID>…</abc:CredentialSpecUID>

 <abc:IssuerParametersUID>…</abc:IssuerParametersUID>

 <abc:RevocationInformationUID>

 …

 </abc:RevocationInformationUID>?

 <abc:DisclosedAttribute AttributeType=”xs:anyURI”

 DataHandlingPolicy=”xs:anyURI”?>

 (<abc:InspectorPublicKeyUID>…</abc:InspectorPublicKeyUID>

 <abc:InspectionGrounds>…</abc:InspectionGrounds>

)?

 <abc:AttributeValue>…</abc:AttributeValue>

 </abc:DisclosedAttribute>*

 </abc:Credential>*

 <abc:VerifierDrivenRevocation>

 <abc:RevocationInformationUID>…</abc:RevocationInformationUID>

 <abc:Attribute AttributeType=”xs:anyURI”

 CredentialAlias=”xs:anyURI” >+

 </abc:VerifierDrivenRevocation>*

 <abc:AttributePredicate Function=”xs:anyURI”>

 (<abc:Attribute CredentialAlias=”xs:anyURI”

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 53 of 94 Public Final version 1.0

 AttributeType=”xs:anyURI”

 DataHandlingPolicy=”xs:anyURI”?/>

 |

 <abc:ConstantValue>…</abc:ConstantValue>

)+

 </abc:AttributePredicate>*

 </abc:PresentationTokenDescription>

 <abc:CryptoEvidence>…</abc:CryptoEvidence>

</abc:PresentationToken>

The following describes the attributes and elements listed in the schema outlined above:

/abc:PresentationToken

This element contains a presentation token.

/abc:PresentationToken/@Version

This attribute indicates the token version number; it MUST be “1.0”.

/abc:PresentationTokenDescription

This element contains a technology-agnostic description of the revealed information.

…/abc:PresentationPolicy/@PolicyUID

This attribute refers to the UID of the presentation policy that this token satisfies.

…/abc:PresentationPolicy/@TokenUID

This optional attribute assigns a unique identifier to this presentation token.

…/abc:PresentationTokenDescription/abc:Message

This optional element specifies a message that is authenticated (signed) by the private key of each

credential in the token.

…/abc:PresentationTokenDescription/abc:Message/abc:Nonce

This optional element contains a random nonce that is to be signed by a presentation token satisfying

this policy. The nonce is generated by the Issuer and prevents replay attacks.

…/abc:PresentationTokenDescription/abc:Message/abc:FriendlyPolicyName

This optional element provides a friendly textual name for the policy. The content of this element

MUST be localized in a specific language.

…/abc:PresentationTokenDescription/abc:Message/abc:FriendlyPolicyName/@lang

A required language identifier, using the language codes specified in [RFC 3066], in which the content

of abc:FriendlyPolicyName element have been localized.

…/abc:PresentationTokenDescription/abc:Message/abc:FriendlyPolicyDescriptio

n

This optional element provides a friendly textual description for the policy. The content of this

element MUST be localized in a specific language.

…/abc:Message/abc:FriendlyPolicyDescription/@lang

A required language identifier, using the language codes specified in [RFC 3066], in which the content

of abc:FriendlyPolicyDescription element have been localized.

…/abc:PresentationTokenDescription/abc:Message/abc:ApplicationData

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 54 of 94 Public Final version 1.0

This optional element can contains data of type string.

…/abc:PresentationTokenDescription/abc:Pseudonym

When present, this element indicates that a pseudonym is presented with the presentation token. If this

policy does not involve any credentials, then this is a verifiable pseudonym, otherwise it is a certified

pseudonym associated to the presented credentials. See Section 2.4 for more information on

pseudonyms.

…/abc:PresentationTokenDescription/abc:Pseudonym/@Scope

This optional attribute indicates that the presented pseudonym is for a specific scope (e.g., a resource

identifier) See Section 2.4 for more information on the use of pseudonyms. The user agent is assumed

to maintain state information to keep track of which pseudonym it previously used for which scope.

…/abc:PresentationTokenDescription/abc:Pseudonym/@Exclusive

When present, this attribute indicates that a scope-exclusive pseudonym is presented with the token.

The value of the @Scope attribute determines the scope with respect to which the pseudonym was

generated. See Section 2.4 for more information on scope-exclusive pseudonyms.

…/abc:PresentationTokenDescription/abc:Pseudonym/@Alias

This optional attribute defines an alias for this pseudonym so that it can be referred to from other

pseudonyms or credentials to enforce same key binding, or, if this presentation token is part of an

issuance token, to support carrying over key binding to the newly issued credential. See the
/abc:IssuancePolicy/abc:CredentialTemplate/abc:UnknownAttributes

/abc:KeyBinding/abc:PseudonymInfo/@Alias element.

…/abc:PresentationTokenDescription/abc:Pseudonym/@SameKeyBindingAs

If present, this XML attribute contains an alias referring either to another Pseudonym element within

this presentation token, or to a Credential element for a credential with key binding. This indicates

that the current pseudonym and the referred pseudonym or credential are bound to the same key.

The pseudonym or credential that is referred to does not have to refer back to this pseudonym. If the

referred to pseudonym or credential also has a SameKeyBindingAs attribute that refers to a third

pseudonym or credential, then all three pseudonyms/credentials are bound to the same key. In other

words, SameKeyBindingAs induces a transitive relationship.

…/abc:PresentationTokenDescription/abc:Pseudonym/abc:PseudonymValue

This element contains the value of the pseudonym encoded as content of type xs:base64Binary.

If the token contains no abc:Credentials element but does contain an abc:Pseudonym, then this

presentation token merely proves knowledge of the secret key underlying the pseudonym.

…/abc:PresentationTokenDescription/abc:Credential

This optional element specifies a credential that is presented in this token. If the token contains no

abc:Credential element but does contain an abc:Pseudonym, then this presentation token merely

proves knowledge of the user secret underlying the pseudonym.

…/abc:PresentationTokenDescription/abc:Credential/@Alias

This optional attribute defines an alias for this credential to refer to attributes from this credential in

attribute predicates. See the /abc:PresentationToken/abc:AttributePredicates element.

…/abc:PresentationTokenDescription/abc:Credential/@SameKeyBindingAs

If present, this XML attribute contains an alias referring either to a Pseudonym element within this

presentation token, or to another Credential element for a credential with key binding. This

indicates that the current credential and the referred pseudonym or credential are bound to the same

key.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 55 of 94 Public Final version 1.0

The pseudonym or credential that is referred to does not have to refer back to this credential. If the

referred to pseudonym or credential also has a SameKeyBindingAs attribute that refers to a third

pseudonym or credential, then all three pseudonyms/credentials are bound to the same key. In other

words, SameKeyBindingAs induces a transitive relationship.

…/abc:Credential/abc:CredentialSpecUID

This element contains the credential specification identifier of the presented credential.

…/abc:PresentationTokenDescriptionabc:Credential/abc:IssuerParametersUID

This element contains the issuer public key identifier of the presented credential.

…/abc:PresentationTokenDescriptionabc:Credential/abc:RevocationInformationU

ID

This optional element contains an identifier of the revocation information with respect to which the

presented credential is proved to be non-revoked. The revocation information referenced here

corresponds to the issuer-driven revocation parameters referenced from the issuer parameters; see the

/abc:PresentationToken/abc:PresentationTokenDescription/abc:Credential/abc:V

erifierDrivenRevocation element for verifier-driven revocation.

When verifying the token, the verifier has to independently obtain the current revocation information

using the mechanism specified by the revocation authority parameters referenced in the

IssuerParameters. It is up to the verifier to check that the revocation information UID referenced

in this element is indeed the most recent one.

…/abc:PresentationTokenDescription/abc:Credential/abc:Attributes

This element lists the attributes from this credential that are revealed by this presentation token, either

in the clear to the verifier itself, or encrypted to an external inspector.

…/abc:PresentationTokenDescription/abc:Credential/abc:DisclosedAttribute

This element specifies one attribute of this credential that is revealed in the presentation token.

…/abc:Credential/abc:DisclosedAttribute/@AttributeType

This attribute specifies the type of the credential attribute of which the value is revealed.

There MUST be at most one abc:DisclosedAttribute element without

abc:InspectorPublicKeyUID child element per credential and per attribute type. Also, for

abc:DisclosedAttribute elements with an abc:InspectorPublicKeyUID child element, there

MUST be at most one abc:DisclosedAttribute element per credential and per attribute type with

the same abc:InspectionGrounds child element.

…/abc:Credential/abc:DisclosedAttribute/@DataHandlingPolicy

This optional XML attribute can be used to refer to an external data handling policy that the Verifier

has to adhere to concerning the revealed attribute value. The data handling policy may be human-

readable and/or machine-readable. The specification of a data handling policy schema is outside of the

scope of this document.

…/abc:Credential/abc:DisclosedAttribute/abc:InspectorPublicKeyUID

This optional element contains the identifier of the inspector public key under which the attribute

value is encrypted.

…/abc:Credential/abc:DisclosedAttribute/abc:InspectionGrounds

This optional element contains a string describing the valid grounds or circumstances under which the

inspector can be asked to decrypt the attribute value or circumstances. This element must be present

whenever a sibling abc:InspectorPublicKeyUID element is present. See Section 2.6 for more

details on revealing attributes to an inspector.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 56 of 94 Public Final version 1.0

…/abc:Credential/abc:DisclosedAttribute/abc:AttributeValue

This element specifies the value of the revealed attribute. When encrypted to an inspector, this element

MAY contain data of type xs:base64Binary representing the ciphertext for the encrypted attribute.

However, there is no guarantee that this data by itself is decryptable by the inspector. When requesting

decryption of an attribute, the complete presentation token must always be sent to the inspector.

…/abc:PresentationTokenDescription/abc:VerifierDrivenRevocation

This optional element specifies all parameters for checking if a (set of) attribute value(s) from the

specified credentials was not revoked using verifier-driven revocation, as requested in the presentation

policy by the verifier.

…/abc:PresentationTokenDescription/abc:VerifierDrivenRevocation/abc:Revocat

ionInformationUID

This element contains an identifier of revocation information with respect to which the presented

(combination of) attribute value(s) is proved to be non-revoked. The revocation information

referenced here corresponds to the verifier-driven revocation parameters mentioned in the verifier’s

presentation policy; see the /abc:PresentationToken/abc:Credential/

abc:RevocationInformationUID element for issuer-driven revocation.

When verifying the token, the verifier has to independently obtain the current revocation information

using the mechanism specified by the revocation authority parameters referenced in the presentation

policy. It is up to the verifier to check that the revocation information UID referenced in this element

is indeed the most recent one.

…/abc:PresentationTokenDescription/abc:VerifierDrivenRevocation/abc:Attribu

te

This element specifies a credential attribute that is used for verifier-driven revocation. In case of

multiple attributes specified, the User proves that a disjunctive combination of the attribute values was

non-revoked with respect to abc:RevocationInformationUID.

…/abc:PresentationTokenDescription/abc:VerifierDrivenRevocation/abc:Attribu

te/@CredentialAlias

This attribute specifies the alias of the credential from which the attribute is used. The specified value

MUST also occur as an Alias attribute in an abc:Credential element within this

abc:PresentationToken.

…/abc:PresentationTokenDescription/abc:VerifierDrivenRevocation/abc:Attribu

te/@AttributeType

This attribute refers to the exact attribute within the credential which is used for verifier driven-

revocation.

…/abc:PresentationTokenDescription/abc:AttributePredicate

This optional element specifies a predicate that is guaranteed to hold by this token. The child elements

are the ordered list of arguments of the predicate.

…/abc:AttributePredicate/@Function

This attribute specifies the boolean function for this predicate. See Section 4.5.3 for a list of supported

functions and their implications on the list of arguments in the child elements. Note that not all

predicate functions can be used for all attributes: the allowed predicate functions depend on the data

type and on the chosen encoding of the credential attributes. See Section 4.2.1 for a list of which

predicates can be used in combination with which data types and encodings.

…/abc:AttributePredicate/abc:Attribute

This element specifies a reference to a credential attribute that is used as an argument of the predicate.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 57 of 94 Public Final version 1.0

…/abc:AttributePredicate/abc:Attribute/@CredentialAlias

This attribute specifies the alias of the credential from which the attribute is used. The specified value

MUST also occur as an Alias attribute in an abc:Credential element within this

abc:PresentationToken.

…/abc:AttributePredicate/abc:Attribute/@AttributeType

This attribute refers to the exact attribute within the credential that is used as an argument in the

predicate.

…/abc:AttributePredicate/abc:Attribute/@DataHandlingPolicy

This optional XML attribute can be used to refer to an external data handling policy that the Verifier

has to adhere to with respect to the information that the attribute value satisfies the specified predicate.

The data handling policy may be human-readable and/or machine-readable. The specification of a data

handling policy schema is outside of the scope of this document.

…/abc:AttributePredicate/abc:ConstantValue

This element contains a constant value that is used as an argument in the predicate. The data type of

the argument depends on the function of the predicate. We refer to Section 4.5.3 for a list of supported

functions and the data types of their arguments.

/abc:PresentationToken/abc:CryptoEvidence

This element contains the cryptographic evidence for the presentation token.

4.4.3 Functions for Use in Predicates

When evaluating predicates over attributes in presentation policies and presentation tokens, the

following list of function URIs from [XACML20] for (in)equality testing of different data types

MUST be supported. We refer to [XACML20, Appendix A] for the semantics of these functions and

the data types of their arguments. In order to prove predicates over credential attributes, the involved

attributes MUST use the same encoding (see Section 4.2.1).

urn:oasis:names:tc:xacml:1.0:function:string-equal

urn:oasis:names:tc:xacml:1.0:function:boolean-equal

urn:oasis:names:tc:xacml:1.0:function:integer-equal

urn:oasis:names:tc:xacml:1.0:function:date-equal

urn:oasis:names:tc:xacml:1.0:function:time-equal

urn:oasis:names:tc:xacml:1.0:function:dateTime-equal

urn:oasis:names:tc:xacml:1.0:function:anyURI-equal

urn:oasis:names:tc:xacml:1.0:function:integer-greater-than

urn:oasis:names:tc:xacml:1.0:function:integer-greater-than-or-equal

urn:oasis:names:tc:xacml:1.0:function:integer-less-than

urn:oasis:names:tc:xacml:1.0:function:integer-less-than-or-equal

urn:oasis:names:tc:xacml:1.0:function:date-greater-than

urn:oasis:names:tc:xacml:1.0:function:date-greater-than-or-equal

urn:oasis:names:tc:xacml:1.0:function:date-less-than

urn:oasis:names:tc:xacml:1.0:function:date-less-than-or-equal

urn:oasis:names:tc:xacml:1.0:function:dateTime-greater-than

urn:oasis:names:tc:xacml:1.0:function:dateTime-greater-than-or-equal

urn:oasis:names:tc:xacml:1.0:function:dateTime-less-than

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 58 of 94 Public Final version 1.0

urn:oasis:names:tc:xacml:1.0:function:dateTime-less-than-or-equal

Moreover, this specification defines the following list of new functions for inequality testing.

urn:abc4trust:1.0:function:string-not-equal

urn:abc4trust:1.0:function:boolean-not-equal

urn:abc4trust:1.0:function:integer-not-equal

urn:abc4trust:1.0:function:date-not-equal

urn:abc4trust:1.0:function:time-not-equal

urn:abc4trust:1.0:function:dateTime-not-equal

urn:abc4trust:1.0:function:anyURI-not-equal

For type being one of string, boolean, integer, date, time, dateTime, or anyURI, the semantics of

function urn:abc4trust:1.0:function:type-not-equal is defined as follows. The function

SHALL take two arguments of data-type http://www.w3.org/2001/XMLSchema#type and SHALL

return an http://www.w3.org/2001/XMLSchema#boolean. The function SHALL return true if and only

if the application of the corresponding function

urn:oasis:names:tc:xacml:1.0:function:type-equal evaluated on the same arguments

returns false. Otherwise, it SHALL return false.

Finally, this specification defines the following list of functions for testing equality against a list of

candidate values.

urn:abc4trust:1.0:function:string-equal-oneof

urn:abc4trust:1.0:function:boolean-equal-oneof

urn:abc4trust:1.0:function:integer-equal-oneof

urn:abc4trust:1.0:function:date-equal-oneof

urn:abc4trust:1.0:function:time-equal-oneof

urn:abc4trust:1.0:function:dateTime-equal-oneof

urn:abc4trust:1.0:function:anyURI-equal-oneof

For type being one of string, boolean, integer, date, time, dateTime, or anyURI, the semantics of

function urn:abc4trust:1.0:function:type-equal-oneof is defined as follows. The function

SHALL take two or more arguments of data-type http://www.w3.org/2001/XMLSchema#type

and SHALL return an http://www.w3.org/2001/XMLSchema#boolean. The function SHALL

return true if and only if the application of the corresponding function urn:oasis:names:tc:

xacml:1.0:function:type-equal evaluated on the first argument and one of the arguments other

than the first returns true. Otherwise, it SHALL return false.

Note that not all predicate functions can be used for all attributes: the allowed predicate functions

depend on the data type and on the chosen encoding of the credential attributes. See Section 4.2.1 for a

list of which predicates can be used in combination with which data types and encodings.

4.5 Issuance

Issuance of Privacy-ABCs is an interactive process between the User and the Issuer, possibly

involving multiple exchanges of messages. This document specifies the contents, encoding, and

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 59 of 94 Public Final version 1.0

processing of the messages; an application needs to define how to exchange them, e.g., by embedding

them in existing messaging protocols.
4

An overview of a typical issuance interaction is given in Figure 4.1. The User initiates the interaction

by sending an issuance request to the Issuer, optionally specifying the requested credential

specification UID.

In the simplest case, the credential is issued “from scratch”, i.e., without relation to any existing

credentials. Even in this case, the issuance protocol may consist of multiple exchanges of issuance

messages.

In a more advanced setting, the new credential that is being issued may carry over attribute values, the

user secret or the device secret from credentials that the User already owns, or may require attributes

values to be generated jointly at random. We refer to Section 2.7 for more details on the possibilities

of advanced issuance protocols.

In the advanced setting, the issuer responds to the initial request with its issuance policy, which

specifies which issuance token the user must present in order to obtain the requested token, which

features of existing credentials will be carried over to the new credential, and which attributes will be

generated jointly at random. The user responds with an issuance token. Then, a number of interaction

rounds may take place to perform the cryptographic issuance protocol. At the end of these rounds, the

Issuer sends the final message allowing the User to construct the issued credential.

Figure 4.1 - Issuance of Privacy-ABCs

Some notes:

 The endpoint to contact, and its authentication requirements, are application specific. The issuance

protocol SHOULD be done over a secure channel to protect the confidentiality of the attribute values.

 Since the exchange is multi-legged, the parties must keep the cryptographic state of each issuance

instance between the message exchanges.

4
 For example, WS-Trust [WS-Trust14] specifies an issuance challenge-response pattern that can be

used to carry the ABC issuance messages, embedding them in RequestSecurityToken and

RequestSecurityTokenResponse messages.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 60 of 94 Public Final version 1.0

User authentication is out of scope of this document. Authentication information MAY be provided

along the issuance messages.

4.5.1 Issuance Policy

Optionally, the Issuer may respond to the User’s initial request by sending the issuance policy. In an

issuance policy, the Issuer describes which credentials he will issue based on which issuance token

presented by the User. The newly issued credential can “carry over” certain features from the existing

credentials used in generating the issuance token, without revealing these features to the Issuer.

Namely, the newly issued credential can be bound to the same User, to the same device, or to the same

revocation handle as one of the existing credentials. Also, attribute values in the new credential can be

carried over from attributes in the existing credentials, without the Issuer being able to see these

attribute values.

In case of an issuance “from scratch”, i.e., for which the User does not have to prove ownership of

existing credentials or established pseudonyms, the issuance policy merely specifies the credential

specification and the issuer parameters for the credential to be issued. The issuance policy is then used

only locally by the Issuer to trigger the issuance protocol.

 <abc:IssuancePolicy Version=”1.0”>

 <abc:PresentationPolicy … > … </abc:PresentationPolicy>?

 <abc:CredentialTemplate SameKeyBindingAs=”xs:anyURI”?>

 <abc:CredentialSpecUID>…</abc:CredentialSpecUID>

 <abc:IssuerParametersUID>…</abc:IssuerParametersUID>

 <abc:UnknownAttributes>

 <abc:CarriedOverAttribute TargetAttributeType=”xs:anyURI”>

 <abc:SourceCredentialInfo Alias=”xs:anyURI”

 AttributeType=”xs:anyURI”/>

 </abc:CarriedOverAttribute>*

 <abc:JointlyRandomAttribute TargetAttributeType=”xs:anyURI”/>*

 </abc:UnknownAttributes>?

 </abc:CredentialTemplate>

 </abc:IssuancePolicy>

The following describes the attributes and elements listed in the schema outlined above:

/abc:IssuancePolicy

This element describes an issuance policy.

/abc:IssuancePolicy/abc:PresentationPolicy

This optional element specifies which token has to be presented by the user in order to be issued a

credential. See the /abc:PresentationPolicyAlternatives/abc:PresentationPolicy

element in Section 4 for a description of the schema. The main goal of this policy and the issuance

token returned in response of it is to carry over features from the existing credentials used to generate

the presentation token into the newly issued credential.

Note that the presentation policy can also request for a self-signed of self-stated credential; see the

IssuerParametersUID element in the PresentationPolicy for details. Using this feature, the

Issuer can have self-signed and self-claimed attributes to be carried over into the newly issued

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 61 of 94 Public Final version 1.0

credential. These attribute values will be visible to the Issuer if the issuance policy explicitly specifies

that they must be revealed, or will be invisible to the Issuer otherwise.

/abc:IssuancePolicy/abc:CredentialTemplate/

This element provides a template for the to-be-issued credential. In case of issuance from scratch it

will only specify the credential specification and the issuer parameters.

/abc:IssuancePolicy/abc:CredentialTemplate/@SameKeyBindingAs

When present, this XML attribute causes the newly issued credential to be bound to the same key as

one of the credentials or pseudonyms in the presentation policy. The value of the attribute refers to the

Alias attribute of the Pseudonym or Credential from which the key must be carried over.

/abc:IssuancePolicy/abc:CredentialTemplate/abc:CredentialSpecUID

This element contains the unique identifier of the credential specification of the newly issued

credential.

/abc:IssuancePolicy/abc:CredentialTemplate/abc:IssuerParametersUID

This element contains the unique identifier of the issuer parameters of the newly issued credential.

/abc:IssuancePolicy/abc:CredentialTemplate/abc:UnknownAttributes

This element specifies the attributes that are unknown to the Issuer and that will either be carried over

from another credential or jointly generated at random.

…/abc:CredentialTemplate/abc:UnknownAttributes/abc:CarriedOverAttribute

This element describes how an unknown attribute is established.

…/abc:UnknownAttributes/abc:CarriedOverAttribute/@TargetAttributeType

This attribute indicates to which attribute in the to-be-issued credential this template information

applies to.

…/abc:UnknownAttributes/abc:CarriedOverAttribute/abc:SourceCredentialInfo

This element contains information about the source credential to transfer the info from.

…/abc:CarriedOverAttribute/abc:SourceCredentialInfo/@Alias

This attribute indicates the alias of the presented credential from which to carry-over the attribute

value.

…/abc:CarriedOverAttribute/abc:SourceCredentialInfo/@AttributeType

This attribute indicates the attribute type of the presented credential from which to carry-over the

attribute value (which could be different than the target attribute type, e.g., from the LastName

attribute of the DriverLicense credential to the GivenName attribute of the StudentCard

credential).

…/abc:UnknownAttributes/abc:JointlyRandomAttribute

This element indicates that a specific attribute of the newly issued credential must be generated jointly

at random, i.e., so that the Issuer does not learn the value of the attribute, but so that the User cannot

bias the uniform distribution of the value.

…/abc:UnknownAttributes/abc:JointlyRandomAttribute/@TargetAttributeType

The attribute type of the newly issued credential that must be assigned a jointly generated random

value.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 62 of 94 Public Final version 1.0

4.5.2 Issuance Token

In case of advanced issuance, the User responds with an issuance token, that contains a presentation

token and credential template satisfying the issuance policy of the Issuer. In order to satisfy the policy,

the credential template in the issuance token must be the same as in the received issuance policy. See

Section 4 for the schema of the presentation token and Section 4.5.1 for the schema of the credential

template.

 <abc:IssuanceToken Version="1.0">

 <abc:IssuanceTokenDescription>

 <abc:PresentationTokenDescription>

 …

 </abc:PresentationTokenDescription>

 <abc:CredentialTemplate SameKeyBindingAs=”xs:anyURI”?>

 …

 </abc:CredentialTemplate>

 </abc:IssuanceTokenDescription>

 <abc:CryptoEvidence>

 …

 </abc:CryptoEvidence>

 </abc:IssuanceToken>

The following describes the attributes and elements listed in the schema outlined above:

/abc:IssuanceToken

This element describes an issuance token.

/abc:IssuanceToken/@Version

This attribute indicates the token version number, it MUST be “1.0”.

/abc:IssuanceToken/abc:IssuanceTokenDescription

This element contains a technology-agnostic description of the revealed information and the new

credential.

…/abc:IssuanceTokenDescription/abc:PresentationTokenDescription

This element contains a technology-agnostic description of the revealed information.

…/abc:IssuanceTokenDescription/abc:CredentialTemplate/

This element provides a template for the to-be-issued credential.

/abc:IssuanceToken/abc:CryptoEvidence/

This element provides the cryptographic evidence for the issuance token.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 63 of 94 Public Final version 1.0

4.5.3 Issuance Messages

Any message that will be exchanged in the course of an issuance protocol is wrapped in an

IssuanceMessage. That includes the issuance policy and issuance token (if requested by the issuer),

as well as the subsequent interactions between the User and Issuer to execute the cryptographic

protocol. The message contents in the remaining flows of the issuance protocol are mechanism-

specific and therefore treated as opaque pieces of information that are exchanged between the Issuer

and the User.

To allow the linkage of the different legs of a protocol, each message includes a Context attribute,

which must have the same value on all legs (including the possible preceding issuance policy/token

exchange).

<abc:IssuanceMessage Context="…">

 …

</abc:IssuanceMessage>

The following describes the attributes and elements listed in the schema outlined above:

/abc:IssuanceMessage

This element contains either an issuance policy, issuance token or mechanism-specific cryptographic

issuance data.

/abc:IssuanceMessage/@Context

The message MUST contain a context attribute and its value MUST match the one from the initial

IssuanceMessage (if any).

4.5.4 Issuance Log Entries

To keep track of all issued credentials, the issuance log is stored on the issuer side. The issuance log

entry contains the verified issuance token (if requested by the issuer), as well as the attribute values

specified by the issuer.

<abc:IssuanceLogEntry Version=”1.0”>

 <abc:IssuanceLogEntryUID>…</abc:IssuanceLogEntryUID>

 <abc:IssuerParametersUID>…</abc:IssuerParametersUID>

 <abc:IssuanceToken> … </abc:IssuanceToken>?

 <abc:IssuerAttributes>

 <abc:Attribute @Type=”xs:anyURI”>

 <abc:AttributeValue>…</abc:AttributeValue>

 </abc:Attribute>*

 </abc:IssuerAttributes>?

</abc:IssuanceLogEntry>

The following describes the attributes and elements listed in the schema outlined above:

/abc:IssuanceLogEntry

This element contains the verified issuance token (if requested by the issuer), as well as the attribute

values specified by the issuer.

/abc:IssuanceLogEntry/abc:IssuanceLogEntryUID

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 64 of 94 Public Final version 1.0

This element contains the identifier of the log entry.

/abc:IssuanceLogEntry/abc:IssuerParametersUID

This element contains the identifier of the Issuer’s parameters of the issued credential.

/abc:IssuanceLogEntry/abc:IssuanceToken

The is optional element contains the verified issuance token.

/abc:IssuanceLogEntry/abc:IssuerAttributes

This element contains the description of the attributes (if any) provided by the issuer in an issued

credential.

/abc:IssuanceLogEntry/abc:IssuerAttributes/abc:Attribute

This element contains the description of an attribute provided by the issuer in an issued credential.

/abc:IssuanceLogEntry/abc:IssuerAttributes/abc:Attribute/@Type

This attribute contains the unique identifier of the attribute type of this credential. The attribute type is

a URI, to which a semantics is associated by the definition of the attribute type. The definition of

attribute types is outside the scope of this document; we refer to Section 7.5 in [IMI1.0] for examples.

The attribute type (e.g., http://example.com/firstname) is not to be confused with the data type

(e.g., xs:string) that is specified by the DataType attribute in the CredentialSpecification.

…/abc:IssuerAttributes/abc:Attribute/abc:AttributeValue

This element contains the actual value of the issued credential attribute provided by the issuer.

4.5.5 Revocation History

To keep track of the revocation process on the upper level, the revocation history is stored on the

revocation authority side. Revocation history contains information, including cryptographic data that

is used by the revocation authority to support revocation (non-revocation evidence/revocation

handle/revocation information generation and updates, keeping track of revocable credentials).

Credentials that are a subject for the verifier-driven revocation are also called revocable in this

context. Registering a revocable credential means adding it to the list of the credentials that can be

revoked by the revocation authority. This can also include generating fresh revocation handle and/or

non-revocation evidence and updating revocation information, if required by the revocation

mechanism. In case of the verifier-driven revocation the registration is optional.

<abc:RevocationHistory Version=”1.0”>

 <abc:RevocationHistoryUID>…</abc:RevocationHistoryUID>

 <abc:RevocationAuthorityParametersUID>…

 </abc:RevocationAuthorityParametersUID>

 <abc:CurrentState>…</abc:CurrentState>?

 <abc:RevocationLogEntry @Revoked=”xs:boolean”>

 <abc:RevocationLogEntryUID>…</abc:RevocationLogEntryUID>

 <abc:RevocableAttribute @Type=”xs:anyURI”>

 <abc:AttributeValue>…</abc:AttributeValue>

 </abc:RevocableAttribute>*

 <abc:DateCreated>…</abc:DateCreated>

 <abc:CryptoParameters>…</abc:CryptoParameters>?

 </abc:RevocationLogEntry>?

</abc:RevocationHistory>

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 65 of 94 Public Final version 1.0

The following describes the attributes and elements listed in the schema outlined above:

/abc:RevocationHistory

This element contains the information that is used by the revocation authority to support revocation

and keep track of revocable credentials.

/abc:RevocationHistory/abc:RevocationHistoryUID

This element contains the identifier of the revocation history.

/abc:RevocationHistory/abc:RevocationAuthorityParametersUID

This element contains the identifier of the revocation authority parameters.

/abc:RevocationHistory/abc:CurrentState

This optional element contains the information (can also contain cryptographic and revocation

mechanism specific data) that is used by the revocation authority to register and revoke credentials.

/abc:RevocationHistory/abc:RevocationLogEntry

This element contains information about credentials that were registered and revoked by the

revocation authority and the corresponding cryptographic data.

/abc:RevocationHistory/abc:RevocationLogEntry/@Revoked

This attribute indicates whether the revocation authority registered a new revocable credential or

revoked an existing one.

/abc:RevocationHistory/abc:RevocationLogEntry/abc:RevocationLogEntryUID

This element contains the identifier of the revocation log entry.

/abc:RevocationHistory/abc:RevocationLogEntry/abc:RevocableAttribute

This element contains the description of an attribute that is used to revoke the credential.

/abc:RevocationHistory/abc:RevocationLogEntry/abc:RevocableAttribute/@Type

This attribute contains the unique identifier of the attribute type of the credential attribute that is used

to revoke the credential. The attribute type is a URI, to which a semantics is associated by the

definition of the attribute type. The definition of attribute types is outside the scope of this document;

we refer to Section 7.5 in [IMI1.0] for examples. The attribute type (e.g.,

http://example.com/firstname) is not to be confused with the data type (e.g., xs:string) that

is specified by the DataType attribute in the CredentialSpecification.

…/abc:RevocationLogEntry/abc:Attribute/abc:AttributeValue

This element contains the actual value of the credential attribute that is used to revoke the credential.

(In case of issuer-driven revocation it contains a value of the revocation handle).

/abc:RevocationHistory/abc:RevocationLogEntry/abc:DateCreated

This element contains a timestamp when the credential was registered or revoked by the revocation

authority.

/abc:RevocationHistory/abc:RevocationLogEntry/abc:CryptoParameters

This element contains mechanism-specific cryptographic data that is used to register or revoke

credentials.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 66 of 94 Public Final version 1.0

4.5.6 Credential Description

At the end of an issuance protocol, the User obtains a new credential. The contents of the new

credential are reported back through a CredentialDescription element that adheres to the

following schema:

<abc:CredentialDescription>

 <abc:CredentialUID>…</abc:CredentialUID>

 <abc:FriendlyCredentialName lang=”xs:language”>

 xs:string

 </abc:FriendlyCredentialName>*

 <abc:ImageReference>xs:anyURI</abc:ImageReference>?

 <abc:CredentialSpecificationUID>…</abc:CredentialSpecificationUID>

<abc:IssuerParametersUID>…</abc:IssuerParametersUID>

 <abc:SecretReference>…</abc:SecretReference>?

 <abc:Attribute>

 <abc:AttributeUID>…</abc:AttributeUID>

 <abc:AttributeDescription @Type=”xs:anyURI” @DataType=”xs:anyURI”

 @Encoding=”xs:anyURI”>

 <abc:FriendlyAttributeName lang=”xs:language”>

 xs:string

 </abc:FriendlyAttributeName>*

 <abc:AttributeValue>…</abc:AttributeValue>

 </abc:AttributeDescription>

 </abc:Attribute>*

</abc:CredentialDescription>

The following describes the attributes and elements listed in the schema outlined above:

/abc:CredentialDescription

This element contains the description of an issued credential in a User’s credential portfolio.

/abc:CredentialDescription/abc:CredentialUID

This element contains a unique local identifier (formatted as a URI) of the issued credential in the

User’s credential portfolio. This identifier acts solely as a local reference within the User’s system; it

is never included in a presentation token or in other artefacts sent across the network for obvious

reasons of linkability.

/abc:CredentialDescription/abc:FriendlyCredentialName

This optional element provides a friendly textual name for the credential. The content of this element

MUST be localized in a specific

language./abc:CredentialDescription/abc:FriendlyCredentialName/@lang

A required language identifier, using the language codes specified in [RFC 3066], in which the content

of abc:FriendlyCredentialName element have been localized.

/abc:CredentialDescription/abc:ImageReference

This optional element contains a reference to the endpoint where the image for the credential can be

obtained.

When implementing a Privacy-ABC system downloading images from the identity providers should

be handled carefully. The reference to the external image resource must not be used every time the

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 67 of 94 Public Final version 1.0

credential is presented. To avoid linkability when using the credential, the corresponding image must

be downloaded and stored locally at the User’s side during the issuance.

/abc:CredentialDescription/abc:CredentialSpecificationUID

This element contains the identifier of the credential specification (formatted as a URI) to which the

issued credential adheres.

/abc:CredentialDescription/abc:IssuerParametersUID

This element contains a reference to the issuer parameters of the Issuer who issued the credential.

/abc:CredentialDescription/abc:SecretReference

This optional element contains a unique local identifier (formatted as a URI) of the secret key to which

the credential is bound, in case key binding is enabled for this credential. A User may have multiple

secret keys; this reference helps in finding the key to which this credential is bound.

This identifier is just a reference to the secret key, not the secret key itself. It acts solely as a local

reference within the User’s system; it is never included in a presentation token or in other artefacts

sent across the network for obvious reasons of linkability.

/abc:CredentialDescription/abc:Attribute

This element contains the description of an attribute in an issued credential.

/abc:CredentialDescription/abc:Attribute/AttributeUID

This element contains a unique local identifier (formatted as a URI) of this attribute in this credential

in the User’s credential portfolio. This identifier acts solely as a local reference within the User’s

system; it is never included in a presentation token or in other artefacts sent across the network for

obvious reasons of linkability.

/abc:CredentialDescription/abc:Attribute/abc:AttributeDescription

This element contains describes the generic description of the attribute, as specified in the
/abc:CredentialSpecification/abc:AttributeDescriptions/

abc:AttributeDescription element for this attribute in the credential specification.

/abc:CredentialDescription/abc:Attribute/abc:AttributeDescription/@Type

This attribute contains the unique identifier of the attribute type of this credential. The attribute type is

a URI, to which a semantics is associated by the definition of the attribute type. The definition of

attribute types is outside the scope of this document; we refer to Section 7.5 in [IMI1.0] for examples.

The attribute type (e.g., http://example.com/firstname) is not to be confused with the data type

(e.g., xs:string) that is specified by the DataType attribute.

/abc:CredentialDescription/abc:Attribute/abc:AttributeDescription/@DataType

This attribute contains the data type of the credential attribute. The supported attribute data types are a

subset of XML Schema data types. We refer to Section 4.2.1 for an overview of the supported data

types.

/abc:CredentialDescription/abc:Attribute/abc:AttributeDescription/@Encoding

To be embedded in a Privacy-ABC, credential attribute values must typically be mapped to fixed-

length integers. The Encoding XML attribute specifies how the value of this credential attribute is

mapped to such an integer. We refer to Section 4.2.1 for an overview of the supported encoding

algorithms.

/abc:CredentialDescription/abc:Attribute/abc:FriendlyAttributeName

This optional element provides a friendly textual name for the attribute in the credential. The content

of this element MUST be localized in a specific language.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 68 of 94 Public Final version 1.0

/abc:CredentialDescription/abc:Attribute/abc:FriendlyAttributeName/@lang

A required language identifier, using the language codes specified in [RFC 3066], in which the content

of abc:FriendlyAttributeName element have been localized.

/abc:CredentialDescription/abc:Attribute/abc:AttributeValue

This element contains the actual value of the issued credential attribute.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 69 of 94 Public Final version 1.0

5 API for Privacy-ABCs

This chapter describes the application programming interfaces (API) of the ABCE layer, focusing

solely on the API that the ABCE layer exposes to the upper layers, in particular, to the application

layer. This information is mainly intended for application developers who want to build applications

that make use of ABCE technology.

The interfaces are described in an object-oriented fashion as a list of methods that take input

parameters of certain types and that produce an output of a certain return type. The data types of the

input and return types either refer to XML artifacts as defined in Chapter 4 or to simple XML Schema

datatypes such as boolean or string.

For ease of integration with applications built on top of our ABCE layer, the actual implementation

will offer the top-level ABCE interfaces described below as web services. The descriptions below

must therefore be mapped to descriptions in the Web Services Description Language (WSDL). Doing

so is straightforward, so for the sake of readability we stick to an object-oriented notation here.

5.1 ABCE methods for Users

boolean canBeSatisfied(PresentationPolicyAlternatives p)

This method, on input a presentation policy p, decides whether the credentials in the User’s

credential store could be used to produce a valid presentation token satisfying the policy p. If

so, this method returns true, otherwise, it returns false.

PresentationToken createPresentationToken(PresentationPolicyAlternatives p)

This method, on input a presentation policy p, returns a presentation token that satisfies the

policy p, or returns an error if no such token could be created. This method will investigate

whether the User has the necessary credentials and/or established pseudonyms to create a

token that satisfies the policy. If there are one or more ways in which the policy can be

satisfied (e.g., by satisfying different alternatives in the policy, or by using different sets of

credentials to satisfy one alternative), this method will invoke an identity selection possibly

presented as a user interface (the executable code of which is installed on the User’s machine

as part of the ABCE framework) to let the user choose her preferred way of generating the

presentation token or cancel the action. If the policy cannot be satisfied (if the

canBeSatisfied method would have returned false), then the method returns an error.

PresentationToken createPresentationToken(PresentationPolicyAlternatives p,

 IdentitySelection idSelectionCallback)

This method is the same as the previous one, except that the ABCE engine will use the

provided idSelectionCallback object instead of using the default build-in idSelection

object.

IssuanceMessage/CredentialDescription issuanceProtocolStep(IssuanceMessage

m)

This method performs one step in an interactive issuance protocol. The input to this method is

an incoming issuance message m obtained from the Issuer, which on the Issuer’s side was

either generated through the Issuer’s initIssuanceProtocol method for the first flow in

the protocol, or through the Issuer’s issuanceProtocolStep method for all subsequent

flows.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 70 of 94 Public Final version 1.0

This method either returns the outgoing issuance message that is to be sent back to the Issuer,

or returns a description of the newly issued credential at successful completion of the protocol.

In the former case, the Context attribute of the outgoing message has the same value as that

of the incoming message, allowing the Issuer to link the different messages of this issuance

protocol.

If this is the first time this method is called for a given context, i.e., if the incoming issuance

message im was generated through the Issuer’s initIssuanceProtocol method, then im

will contain an issuance policy ip, and the returned outgoing issuance message will contain an

issuance token that satisfies the issuance policy, possibly also containing self-claimed

attributes. This method will investigate whether the User has the necessary credentials and/or

established pseudonyms to create an issuance token that satisfies the issuance policy. If there

are multiple ways in which the policy can be satisfied (e.g., by using different sets of

credentials), this method will invoke an identity selection interface to choose the preferred

way of generating the presentation token. The identity selection interface will also allow the

user to manually enter values for self-claimed attributes.

IssuMsgOrCredDesc issuanceProtocolStep(IssuanceMessage m,

IdentitySelection idSelectionCallback)

This method is the same as the previous one, except that the ABCE engine will use the

provided idSelectionCallback object instead of using the default build-in idSelection

object.

void updateNonRevocationEvidence()

This method updates the non-revocation evidence associated to all credentials in the credential

store. Calling this method at regular time intervals reduces the likelihood of having to update

non-revocation evidence at the time of presentation, thereby not only speeding up the

presentation process, but also offering improved privacy as the Revocation Authority is no

longer “pinged” at the moment of presentation.

URI[] listCredentials()

This method returns an array of all unique credential identifiers (UIDs) available in the

Credential Manager.

CredentialDescription getCredentialDescription(URI credUid)

This method returns the description of the credential with the given unique identifier. The

unique credential identifier credUid is the identifier which was included in the credential

description that was returned at successful completion of the issuance protocol.

boolean deleteCredential(URI credUid)

This method deletes the credential with the given identifier from the credential store. If

deleting is not possible (e.g. if the referred credential does not exist) the method returns false,

and true otherwise.

5.2 ABCE methods for Verifiers

PresentationTokenDescription verifyTokenAgainstPolicy(

PresentationPolicyAlternatives p, PresentationToken t, boolean store)

This method, on input a presentation policy p and a presentation token t, checks whether the

token t satisfies the policy p and checks the validity of the cryptographic evidence included in

token t. If both checks succeed and store is set to true, this method stores the token in a

dedicated store and returns a description of the token that includes a unique identifier by

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 71 of 94 Public Final version 1.0

means of which the token can later be retrieved from the store. If one of the checks fails, this

method returns a list of error messages.

PresentationToken getToken(URI tokenUid)

This method looks up a previously verified presentation token. The unique token identifier

tokenUid is the identifier that was included in the token description that was returned when

the token was verified.

boolean deleteToken(URI tokenUid)

This method deletes the previously verified presentation token referenced by the unique

identifier tokenuid. It returns true in case of successful deletion, and false otherwise.

5.3 ABCE methods for Issuers

SystemParameters setupSystemParameters(int securityLevel, URI

cryptoMechanism)

This method generates a fresh set of system parameters for the given security level, expressed

as the bitlength of a symmetric key with comparable security, and cryptographic mechanism.

Issuers can generate their own system parameters, but can also reuse system parameters

generated by a different entity. More typically, a central party (e.g., a standardization body)

will generate and publish system parameters for a number of different key lengths that will be

used by many Issuers. Security levels 80 and 128 MUST be supported; other values MAY also

be supported.

Currently, the supported mechanism URIs are urn:abc4trust:1.0:algorithm:idemix

for Identity Mixer and urn:abc4trust:1.0:algorithm:uprove for U-Prove.

IssuerParameters setupIssuerParameters(CredentialSpecification credspec,

SystemParameters syspars, URI uid, URI hash, URI revParsUid)

This method generates a fresh issuance key and the corresponding Issuer parameters. The

issuance key is stored in the Issuer’s key store, the Issuer parameters are returned as output of

the method. The input to this method specify the credential specification credspec of the

credentials that will be issued with these parameters, the system parameters syspars, the

unique identifier uid of the generated parameters, the hash algorithm identifier hash, and,

optionally, the parameters identifier for any Issuer-driven Revocation Authority.

Currently, the only supported hash algorithm is SHA-256 with identifier

urn:abc4trust:1.0:hashalgorithm:sha-256.

(IssuanceMessage, boolean, URI) initIssuanceProtocol(IssuancePolicy ip,

Attribute[] attributes)

This method is invoked by the Issuer to initiate an issuance protocol based on the given

issuance policy ip and the list of attribute type-value pairs atts to be embedded in the new

credential. It returns an IssuanceMessage that is to be sent to the User and fed to the

issuanceProtocolStep method on the User’s side. The IssuanceMessage contains a

Context attribute that will be the same for all message exchanges in this issuance protocol, to

facilitate linking the different flows of the protocol.

In case of an issuance “from scratch”, i.e., for which the User does not have to prove

ownership of existing credentials or established pseudonyms, the given issuance policy ip

merely specifies the credential specification and the issuer parameters for the credential to be

issued. In this case, the returned issuance message is the first message in the actual

cryptographic issuance protocol.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 72 of 94 Public Final version 1.0

In case of an “advanced” issuance, i.e., where the User has to prove ownership of existing

credentials or pseudonyms to carry over attributes, a user secret, or a device secret, the

returned IssuanceMessage is simply a wrapper around the issuance policy ip with a fresh

Context attribute. The returned boolean indicates whether this is the last flow of the

issuance protocol. If the IssuanceMessage is not the final one, the Issuer will subsequently

invoke its issuanceProtocolStep method on the next incoming IssuanceMessage from

the User. The issuer also returns the uid of the stored issuance log entry that contains an

issuance token together with the attribute values provided by the issuer to keep track of the

issued credentials.

(IssuanceMessage, boolean, URI) issuanceProtocolStep(IssuanceMessage m)

This method performs one step in an interactive issuance protocol. On input an incoming

issuance message m received from the User, it returns the outgoing issuance message that is to

be sent back to the User, a boolean indicating whether this is the last message in the protocol,

and the uid of the stored issuance log entry that contains an issuance token together with the

attribute values provided by the issuer to keep track of the issued credentials. The Context

attribute of the outgoing message has the same value as that of the incoming message,

allowing the Issuer to link the different messages of this issuance protocol.

IssuanceLogEntry getIssuanceLogEntry(URI issuanceEntryUid)

This method looks up an issuance log entry of previously issued credentials that contains a

verified issuance token together with the attribute values provided by the issuer. The issuance

log entry identifier issuanceEntryUid is the identifier that was included in the issuance

token description that was returned when the token was verified.

5.4 ABCE methods for Revocation Authorities

RevocationAuthorityParameters setupRevocationAuthorityParameters(int

securityLevel, URI cryptoMechanism, URI uid, RevocationInfoReference

infoRef, NonRevocationEvidenceReference evidenceRef,

RevocationUpdateReference updateRef)

For a given security level, expressed as the bitlength of a symmetric key with comparable

security, and revocation mechanism, this method generates a fresh secret key for the

Revocation Authority and corresponding public Revocation Authority parameters, as well as

the initial revocation information. The secret key is stored in trusted storage. Also included in

the returned Revocation Authority parameters are the given identifier uid as well as the

endpoints where Users, Verifiers and Issuers can obtain the latest revocation information

(infoRef), initial non-revocation evidence (evidenceRef), and updates to their non-

revocation evidence (updateRef). Security levels 80 and 128 MUST be supported; other

values MAY also be supported.

The list of supported revocation mechanisms and their identifiers have not yet been defined,

please check with our implementation team which values to use here as soon as revocation is

supported.

RevocationInformation getCurrentRevocationInformation(URI revParsUid)

This method takes as input the unique identifier (UID) of revocation authority parameters

revParsUid and returns the latest revocation information corresponding to the specified

revocation parameters.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 73 of 94 Public Final version 1.0

RevocationInformation revoke(URI revParUid, Attribute[] attributes)

This method revokes the attribute values specified by the input parameter attributes with

respect to the revocation parameters specified by their unique identifier revParUid. When

attributes contains multiple attribute type-value pairs, then the combination of these

attribute values is revoked, i.e., all credentials that have the combination of attribute values

specified in attributes are revoked. In the special case of Issuer-driven revocation,

attributes contains one attribute value that is the revocation handle, so that only the unique

credential with that revocation handle has been revoked.

RevocationHistory getRevocationHistory(URI revocationHistoryUid)

This method looks up a revocation history that contains the information that is used by the

revocation authority to support revocation and keep track of revocable credentials. The

revocation history identifier issuanceEntryUid is the unique identifier that may be derived

from the identifier of the Revocation Authority parameters.

5.5 ABCE methods for Inspectors

InspectorPublicKey setupInspectorPublicKey(int securityLevel, URI

mechanism, URI uid)

This method generates a fresh decryption key and corresponding encryption key for the given

security level, expressed as the bitlength of a symmetric key with comparable security, and

cryptographic mechanism. It stores the decryption key in the trusted storage and returns the

inspector public key with the given identifier uid. The identifier associated with the key will

be used in presentation/issuance policies as the unique reference to a particular Inspector.

Security levels 80 and 128 MUST be supported; other values MAY also be supported. The

only currently supported mechanism identifier is

urn:abc4trust:1.0:inspectionalgorithm:camenisch-shoup03.

Attribute[] inspect(PresentationToken t)

This method takes as input a presentation token with inspectable attributes and returns the

decrypted attribute type-value pairs for which the Inspector has the inspection secret key.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 74 of 94 Public Final version 1.0

6 Applicability to existing Identity Infrastructures

Many identity protocols and frameworks are in use today, and new ones are being developed by the

industry, each addressing specific use cases and deployment environments. Privacy concerns exist in

many scenarios targeted by these systems, and therefore it is useful to understand how they could

benefit from Privacy-ABC technologies to improve their security, privacy, and scalability.

In this chapter, we consider the following popular systems: WS-*, SAML, OpenID, OAuth, and

X.509. A short description of each system is given to facilitate the discussion, but is by no means

complete; the reader is referred to the appropriate documentation to learn more about a particular

system. Moreover, we mostly describe “how” integration can be done, rather than discussing “why” as

this is highly application-specific.

The last section describes the common challenges of these federated systems, and how Privacy-ABC

technologies can help to alleviate them.

6.1 WS-*

The set of WS-* specifications define various protocols for web services and applications. Many of

these relate to security, and in particular, to authentication and attribute-based access (such as WS-

Trust [WSTrust], WS-Federation [WSFed], and WS-SecurityPolicy [WSSecPol]). These

specifications can be combined to implement various systems with different characteristics.

Figure 6.1 - WS-Trust protocol flow

The WS-Trust specification is the main building block that defines how security tokens can be

obtained and presented by users. The specification does not make any assumption on the type of

tokens exchanged, and provides several extensibility points and protocol flow patterns suitable for

Privacy-ABC technologies.

In WS-Trust, a requestor (user) requests a security token from the Identity Provider’s Security Token

Service (the issuer) encoding various certified claims (attributes), and presents it (either immediately

or at a later time) to a Relying Party (the verifier); see Figure 6.1.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 75 of 94 Public Final version 1.0

Integrating Privacy-ABC technologies in WS-Trust is straightforward due to the extensible nature of

the WS-* framework. The issuance protocol is initiated by the requestor by sending, as usual, a

RequestForSecurityToken message to the STS. The requestor and the STS then exchange as

many RequestForSecurityTokenResponse messages as needed by the ABC issuance protocol

(using the challenge-response pattern defined in Section 8 of [WS-Trust]). The STS concludes the

protocol by sending a RequestForSecurityTokenResponseCollection message. Typically, this

final message contains a collection of requested security tokens. Due to the nature of the Privacy-ABC

technologies, the STS does not send the security tokens per se, but the requestor is able to compute its

credential(s) using the exchanged cryptographic data. See Figure 6.2.

The issuance messages are tied together using a unique context, but otherwise do not specify the

content and formatting of their contents. It is therefore possible to directly use the protocol artefacts

defined earlier in this document (see Chapter 5).

Figure 6.2 - WS-Trust issuance protocol

Presenting an ABC to a Relying Party is also straightforward. The exact mechanism to use depends on

the application environment. For example, in a federated architecture using WS-Federation, the

presentation token could be included in a RequestForSecurity TokenResponse message part of

a wresult HTTP parameter. Given the support of extensible policy (using, e.g., WS-SecurityPolicy),

the ABC verifier policy could be expressed by the Relying Party and obtained by the client; e.g., it

could be embedded in a service’s federation metadata (see Section 3 of [WSFed]).

Privacy-ABC technology integration into WS-Trust has been successfully demonstrated; see, e.g.,

[UPWTP].

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 76 of 94 Public Final version 1.0

6.2 SAML

The Security Assertion Markup Language (SAML) is a popular set of specifications for exchanging

certified assertions in federated environments. Different profiles exist addressing various use cases,

but the core specification [SAML2.0] defines the main elements: the SAML assertion (a XML token

type that can encode arbitrary attributes), and the SAML protocols for federated exchanges.

Typically, a User Agent (a.k.a. requester or client) requests access to a resource from a Relying Party

(a.k.a. Service Provider) which in turn requests a SAML assertion from a trusted Identity Provider

(a.k.a. SAML Authority). The User Agent is redirected to the Identity Provider to retrieve the SAML

assertion (after authenticating to the Identity Provider in an unspecified manner) before passing it back

to the Relying Party. Figure 6.3 illustrates the protocol flow.

Figure 6.3 - SAML protocol flow

Contrary to WS-*, the SAML protocols only permit the use of the SAML assertion token type.

Therefore, one needs to profile the SAML assertion in order to use the Privacy-ABC technologies with

the SAML protocols. The SAML assertion schema defines an optional ds:Signature element used

by the Identity Provider to certify the contents of the assertion. If used, it must be a valid XML

Signature [XMLSignature]. This means that XML Signature must also be profiled to support ABC

issuer signatures.
5
 The alternative would be to protect the SAML assertion using a custom external

signature element.

ABC-based SAML assertions could be used in the SAML protocols in various ways. One example

would be for the client to create a modified SAML assertion using a Privacy-ABC in response to a

Relying Party’s authentication request rather than fetching it in real-time from the Identity Provider

(replacing steps 3 and 4 in the figure above). The assertion would contain the disclosed attributes, and

encode the presentation token’s cryptographic data in the SAML signature. Essentially, the SAML

assertion would be an alternative token type to the ABC presentation token.

5
 This could be achieved by applying the appropriate XML transforms on the assertions contents before

interpreting them as input to the ABC protocols.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 77 of 94 Public Final version 1.0

Additionally, the Identity Provider could issue an on-demand Privacy-ABC using the SAML protocol;

this might require multiple roundtrips to accommodate the potentially interactive issuance protocol.

Then the SAML assertion presented to the Relying Party would need to be created as explained above.

6.3 OpenID

OpenID is a federated protocol allowing users to present an identifier
6
 to Relying Parties by first

authenticating to an OpenID Provider. The current specification, OpenID 2.0 [OpenID2.0], specifies

the protocol. We illustrate the steps in Figure 6.4:

Figure 6.4 - OpenID protocol flow

We assume that the user has an existing OpenID identifier registered with an OpenID Provider.

1. To login to a Relying Party, the user presents her (unverified) OpenID identifier.

2. The Relying Party parses the identifier to discover the User’s OpenID Provider and redirects

the User Agent to it.

3. The user authenticates to the OpenID Provider; how this is achieved is out-of-scope of the

OpenID specification (popular existing web deployments use usernames and passwords).

4. Upon successful authentication, the OpenID Provider redirects the User Agent to the Relying

Party with a signed successful authentication message.

5. The Relying Party validates the authentication message using either a shared secret with the

OpenID Provider or alternatively, by contacting the OpenID Provider directly.

OpenID follows a standard federated single sign-on model and therefore inherits the security and

privacy problems of such systems. The OpenID specification describes in Section 15 some

countermeasures against common concerns, but nonetheless, the systems remains vulnerable to active

6
 the specification describe this as a URL or XRI (eXtensible Resource Identifier), but extensions used by

popular deployments use email addresses.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 78 of 94 Public Final version 1.0

attackers, especially to attacks originating from protocol participants (see, e.g., [IDCorner] for a

summary of the issues).

Privacy-ABC technologies could be used to increase both the security and privacy of the protocol, and

reduce the amount of trust needed on OpenID Providers. For example, certified or scope-exclusive

pseudonyms derived from an ABC issued by an OpenID Provider could be used as local Relying Party

identifiers, therefore providing unlinkability between the User’s spheres of activities at different

Relying Parties (using the Relying Partie’s URL as a scope string). The cryptographic data in the

corresponding ABC presentation token would need to be encoded in extension parameters defined in

an ABC profile.

A similar integration has been demonstrated in the PseudoID prototype [PseudoID], using Chaum’s

blind signatures [Cha82].

OpenID may also be used in attribute-based access scenarios. The OpenID Attribute Exchange

[OIAE1.0] extension describes how Relying Party can request attributes of any type from the OpenID

Provider by adding fetch parameters in the OpenID authentication message, and how an OpenID

Provider can return the requested attributes in the response.

To generate an ABC-based response, the User Agent would create the OpenID response on behalf of

the OpenID Provider using the contents of a presentation token, properly encoding the disclosed

attributes using the OpenID Attribute Exchange formatting and by encoding the cryptographic

evidence in custom attributes.

6.4 OAuth

OAuth is an authorization protocol that enables applications and devices to access HTTP
7
 services on

behalf of users using delegated tokens rather than the users’ main credentials. The current

specification, OAuth 1.0, is specified in RFC 5849 [OAuth1.0].

The OAuth 2.0 [OAuth2.0] is now being developed by the IETF OAuth working group.
8
 This new

version simplifies the base protocol and defines multiple profiles adapted for different scenarios. We

will concentrate our discussion on this upcoming standard.

OAuth specifies four roles. Quoting from the spec:

 resource owner: an entity capable of granting access to a protected resource (e.g. end-user).

 resource server: the server hosting the protected resources, capable of accepting responding

to resource requests using access tokens.

 client: an application making protected resource requests on behalf of the owner and with its

authorization.

 authorization server: the server issuing access tokens to the client after successfully

authenticating the resource owner and obtaining authorization.

An example scenario is as follows: an end-user (resource owner) can grant a printing service (client)

access to her protected photos stored at a photo sharing service (resource server), without sharing her

username and password with the printing service. Instead, she authenticates directly with a server

trusted by the photo sharing service (authorization server) which issues the service delegation-specific

credentials (access token).

A typical OAuth interaction is illustrated in Figure 6.5:

7
 Using a transport protocol other than HTTP is undefined by the specification.

8
 OAuth 2.0 evolved from the OAuth WRAP [OAuthWRAP] profile which has been deprecated.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 79 of 94 Public Final version 1.0

Figure 6.5 - OAuth 2.0 protocol flow

a. The client requests authorization from the resource owner. The authorization request can be

made directly to the resource owner (as shown), or preferably indirectly via the authorization

server as an intermediary.

b. The client receives an authorization grant which is a credential representing the resource

owner's authorization, expressed using one of four grant types defined in this specification or

using an extension grant type. The authorization grant type depends on the method used by the

client to request authorization and the types supported by the authorization server.

c. The client requests an access token by authenticating with the authorization server and

presenting the authorization grant.

d. The authorization server authenticates the client and validates the authorization grant, and if

valid issues an access token.

e. The client requests the protected resource from the resource server and authenticates by

presenting the access token.

f. The resource server validates the access token, and if valid, serves the request.

As we can see, two types of credentials are used in the protocol flow: the authorization grant and the

access token. A Privacy-ABC could be used for either one, as we will describe in the following

sections.
9
 The OAuth protocol flow does not allow presenting a dynamic policy to the client; if this

functionality is needed, the policy would need to be obtained and processed at the application layer;

otherwise, the application may use an implicit policy that drives the client’s behaviour.

9
 The OAuth specification does not describe how the resource owner authenticates the client before issuing the

authorization grant. Conceptually, this could also be done using an ABC.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 80 of 94 Public Final version 1.0

6.4.1 Authorization grant

The first step in the OAuth flow is for the client to request authorization from the resource owner and

getting back an authorization grant. The OAuth specification defines four grant types (authorization

code, implicit, resource owner password credentials, and client credentials) and provides an extension

mechanism for defining new ones.

Although one could use the authorization code or the client credential grant types, the extension

mechanism is better-suited to integrate ABC-based grants. How the Privacy-ABC is obtained by the

client is out-of-scope of the OAuth flow. To present the Privacy-ABC to the authorization server, one

could define a profile similar to the SAML assertion one [OAuthSAML2]. For example, the client

could send the following access token request to the authorization server:

 POST /token HTTP/1.1

 Host: server.example.com

 Content-Type: application/x-www-form-urlencoded;charset=UTF-8

 grant_type=http://abc4trust.eu/oauth&abctoken=PEFzc2VydGlvbiBJc

 3N1ZUluc3RhbnQ9IjIwMTEtMDU[...omitted for brevity...]aG5TdGF0Z

where the abctoken parameter would contain an encoding of a presentation token (e.g., using a

base64 encoding of the XML representation). As mentioned above, the policy driving the client’s

presentation behaviour would be dealt with at the application level (and might be fixed for an

application).

6.4.2 Access token

An access token is issued by the authorization server to the client and later presented to the resource

server. The format and contents of the access token is not defined in the OAuth specification, and

therefore one could define a way to use a Privacy-ABC to create an access token. This can be done by

defining a new access token type (as explained in Section 8.1 of [OAuth2.0]), or by encoding the

presentation token content into an existing extensible token type, such as the JSON Web Token

[JWT].
10

Since access tokens are typically long-lived, the issuance of the Privacy-ABC can be done out-of-band

of the OAuth protocol. It can also be done directly by the authorization server by embedding the

issuance protocol messages in multiple access token request-response runs (in which case the returned

“access tokens” would be the opaque issuance messages). When this process concludes, the client

would be able to create a valid ABC-based access token.

To present the ABC access token, client computes a valid presentation token using an application-

specific resource policy (obtained out-of-band or implicitly defined), encodes it in the right access

token format, and includes it in the OAuth protected resources access request.

6.5 X.509 PKI

Most of the schemes presented in this chapter require online interactions with an Issuer to present

attributes to a Relying Party. This provides flexibility about what can be disclosed to the Relying

Party, but impacts the privacy vis-à-vis the Issuer (which typically learns where the attributes are

presented). A Public Key Infrastructure (PKI) uses a different approach: PKI certificates encoding

10

 The JSON Web Token format contains a set of attribute name and value pairs and corresponding metadata

(including a digital signature identified by an algorithm identifier). This is supported by ABC technologies, but

does not allow the representation of the most advanced features.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 81 of 94 Public Final version 1.0

arbitrary attributes and issued to users are typically long-lived. The decoupling of the issuance and

presentation protocols provides some privacy benefits to the user, but removes the minimal disclosure

aspect. Indeed, a Verifier will learn everything that is encoded in a certificate even if a subset of the

information would have been sufficient to make its access decision. The integration of Privacy-ABC

technology is therefore desirable to provide these privacy benefits while offering the same security

level as in PKI.

X.509 [X.509] is a popular PKI standard
11

 that defines two types of credentials: public key and

attribute certificates. A public key certificate contains a user public key associated to a secret private

key, and other metadata (serial number, a validity period, a subject name, etc.) The certificate is signed

by a Certificate Authority. An attribute certificate, also signed by the CA, is tied to a public-key

certificate and can contain arbitrary attributes. Both types of certificates can also contain arbitrary

extensions.

The X.509 protocol flow is as follows. The client starts by generating a key pair, and sends a

certificate request that includes the generated public key to the Certificate Authority. The Certificate

Authority creates, signs and returns the X.509 certificate to the client which stores it along with the

associated private key. To authenticate to a Relying Party, the client later uses the certificate’s private

key to sign a Relying Party-specified challenge (either a random number or an application-specific

message). The Relying Party verifies the signature and validates the certificate. This involves

verifying the certificate’s Certificate Authority signature, making sure that the Certificate Authority is

a trusted issuer (is or is linked to a trusted root), and making sure that the certificate has not expired

and is not revoked. Checking for non-revocation can be done by either checking that the certificate’s

serial number does not appear on a Certificate Revocation List (CRL), or by querying an Online

Certificate Status Protocol (OCSP) responder.
12

 See Figure 6.6.

11

 Other PKI systems exist, such as PGP [PGP]. We will not consider them in this document, but ABC

integration would look similar.
12

 The mechanism and endpoint to be used are specified by the CA and encoded into the certificate.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 82 of 94 Public Final version 1.0

Figure 6.6 - X.509 protocol flow

Integrating Privacy-ABCs with X.509 certificates is possible and provides two immediate benefits:

 Long-lived certificates support minimal disclosure (only the relevant properties of encoded

attributes are disclosed to the Relying Party rather than the full set of attributes), and

 The user’s public key and the Certificate Authority signatures on the certificates are unlinkable

(the Certificate Authority and the Relying Parties cannot track and trace the usage of the certificate

based solely on these cryptographic values).

Two integration approaches are considered next. The first one consists of encoding the ABC artefacts’

contents in X.509 artefacts using ABC-specific algorithm identifiers and extensions (i.e., the client

would generate an X.509 certificate encoding the Privacy-ABC’s contents at the end of the issuance

protocol). Since the presentation protocol of an X.509 certificate is not specified, the presentation

token artefact could be used almost as is, but including the modified X.509 certificate.

The second and preferred
13

 approach would be to transform an existing X.509 certificate into a

Privacy-ABC that can be presented to various Relying Parties. The following example illustrates the

concept: The protocol flow would be as follows:

1. The client visits the ABC issuer and presents her X.509 certificate.

2. After validating the certificate and its ownership by the User, the ABC Issuer issues a Privacy-

ABC encoding the certificate’s information into attributes:

a. The certificate’s expiration date is encoded in an attribute.

b. The certificate’s serial number is encoded as the revocation handle.

c. The revocation information (e.g., the CRL endpoint)
14

 is encoded in an attribute.

13

 We claim that this approach is preferred because of the broad existing code base implementing X.509. It

would be easier to develop an conversion module on top of existing X.509 components.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 83 of 94 Public Final version 1.0

d. The Certificate Authority identifier is encoded in an attribute.

e. The other certificate fields might also be encoded in the Privacy-ABC if they need to

be presented to Relying Parties.

3. The client later presents the ABC to the Verifier, disclosing the following information:

a. Disclose the Certificate Authority identifier
15

 and revocation information attributes.

b. Prove that the underlying certificate is not expired by proving that the undisclosed

expiration date is not before the current time.

c. Prove that the serial number does not appear on the current CRL (this can be achieved

using repetitive negation proofs on the CRL elements).
16

4. The Verifier would perform these validation steps (on top of the normal ABC validation):

a. Verify that the Certificate Authority is from a trusted set of issuers.

b. Retrieve the current CRL (using the disclosed revocation information) and verify the

non-revocation proof.

c. Verify the non-expiration proof.

After these steps, the Verifier is convinced that the user possesses a valid (i.e., non-expired, non-

revoked) X.509 certificate from a trusted Certificate Authority.

6.6 Integration summary

The systems presented above follow a similar federated pattern of a Relying Party requesting, through

the user, login or attribute information from a trusted Identity Provider. In PKI and OAuth the certified

information (certificate and access token, respectively) are typically obtained in advance and reused

over time, while in the other systems, the information is retrieved on-demand from the Identity

Provider.

These architectures have some security, privacy, and scalability challenges that might be problematic

in some scenarios:

 The Identity Provider can often access the Relying Party using a user’s identity without the

user’s knowledge. This is trivial in systems where the Identity Provider creates the pseudonym

(like in SAML, OpenID, OAuth, WS-Federation). In systems where a user secret is employed

(like in PKI, or in some WS-Trust profiles), this is more complicated but still could be

possible.
17

 Moreover, Identity Providers can also selectively deny access to users by refusing

to issue security tokens (discriminating on the requesting user or requested service).

 For authentication depending on knowledge of a user secret (e.g., username/password),

phishing attacks on the credential provided to the Identity Provider result in malicious access

to all Relying Parties that accept that identity.

14
 This example uses a CRL as the revocation mechanism. Using OCSP would also be possible by having the

client prove to the OCSP responder directly that the ABC is not revoked, and presenting a freshly issued

“receipt” to the Relying Party.
15

 Alternatively, the client could prove that the CA is from a trusted set specified by the Verifier.
16

 Alternatively, an ABC Revocation Authority could create an accumulator for the revoked values.
17

 As an example, in PKI, a Certificate Authority would not be able to re-issue a valid certificate containing the

user’s public key, but could re-issue one with a matching serial number and subject and key identifiers often

used for user authentication.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 84 of 94 Public Final version 1.0

 Strong authentication to the Identity Provider is often supported (including multi-factor

asymmetric-based authentication), but the resulting security tokens (e.g., SAML assertion,

OAuth access token, OpenID authentication response) are typically weaker software-only

bearer token which can be intercepted and replayed by adversaries.

 The Identity Provider typically learns which Relying Party the user is trying to access. For on-

demand security token issuance, this information is often provided to the Identity Provider in

order to protect the security token (e.g., to encrypt it for the Relying Party) or to redirect the

user to the right location. When security tokens are long-lived (like in PKI), this information is

still available if the Identity Providers and Relying Parties compare notes (since signatures on

security tokens generated using conventional cryptography are traceable).

 Central Identity Providers in on-demand federated systems limit the scalability of the systems

because if they are offline, users will not be able to access any Relying Parties. This makes

them interesting targets for denial of service attacks.

Privacy-ABC technologies help alleviate these issues by increasing the security, privacy, and

scalability of these systems. Indeed:

 Since Privacy-ABCs are by default untraceable, even when obtained on-demand, Identity

Providers are not able to track and trace the usage of the users’ information.

 Since Privacy-ABCs can be obtained in advance and stored by the user while still being able

to disclose the minimal amount of information needed for a particular transaction, the real-

time burden of the issuer is diminished, improving scalability.

 Since Privacy-ABCs are based on asymmetric cryptography, presenting login pseudonyms

and certified attributes involve using a private key unknown to the Issuer, meaning that the

Identity Provider (or another adversary) is unable to hijack the user’s identity at a particular

Relying Party.

Privacy-ABC technologies offer a wide range of features; not all of them trivially compatible with the

systems presented in this chapter. The important point is that Privacy-ABC technologies offer a

superset of the functionality and of the security/privacy/scalability characteristics of these systems.

Protocol designers and architects can therefore pick and choose which features and characteristics they

would like to use to improve existing systems or their future revisions.

It is also important to note that Privacy-ABC technologies can be used in conjunction with these

frameworks, since many real-life applications won’t have the luxury to modify the existing standards

and development libraries. Most of the privacy concerns occur in cross-domain data sharing, i.e., when

information travels from one domain to another. Therefore, an ABC “proxy” can be used as a privacy

filter between domains using well-known federated token transformer pattern (such as the WS-Trust

STS). This is useful to avoid modifying legacy applications and infrastructure, and still benefit from

the security and privacy properties of Privacy-ABC technologies.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 85 of 94 Public Final version 1.0

Appendix A - On the use of Security Levels

The current revision of the ABCE API introduces the concept of “security levels”, which makes the

underlying cryptographic mechanisms (i.e. key sizes) more transparent to developers and system

designers. In fact we believe that users will find these security levels more useful than specific key

sizes for various cryptographic schemes when seeking answers to questions like “If I want my system

to be protected against this XYZ attack, what security level should I use?”. This is especially true in

the case of ABC4Trust, given the fact that a preliminary threat analysis has already taken place.

To aid users of the ABCE API in choosing a security level that is adequate for their needs, we

introduce some basic guidelines in Table A.2 based on the ECRYPT II recommendations [Smart11].

When choosing a security level through the ABCE API, the ABCE will generate the actual

cryptographic keys for the selected scheme, of a size corresponding to the chosen security level. The

table also shows the corresponding security level in bits for a symmetric encryption scheme (such as

AES), which is a security metric many developers and system designers are already familiar with.

Table A.2 - Security Levels (symmetric equivalent) based on ECRYPT II

Symmetric Security

(bits)

Protection Comment

32 Attacks in “real-time” by

individuals.

Only acceptable for auth. Tag

size

64 Very short-term protection

against small organizations.

Should not be used for

confidentiality in new systems.

72 Short-term protection against

medium organizations,

medium-term protection

against small organizations.

80 Very short-term protection

against agencies, long term

protection against small

organizations.

Smallest general-purpose level,

 4 years protection.

96 Legacy standard level. Approx. 10 years protection.

112 Medium-term protection. Approx. 20 years protection.

128 Long-term protection. Good, generic application

independent recommendation

(approx. 30 years protection).

256 “Foreseeable future” Good protection against

quantum computers unless

Shor's algorithm applies.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 86 of 94 Public Final version 1.0

Glossary

Attribute

A piece of information, possibly certified by a credential, describing a characteristic of a

natural person or entity, or of the credential itself. An attribute consists of an attribute type

determining the semantics of the attribute (e.g., first name) and an attribute value determining

its contents (e.g., John).

Certified pseudonym

A verifiable pseudonym based on a user secret that also underlies an issued credential. A

certified pseudonym is established in a presentation token that also demonstrates possession of

a credential bound to the same User (i.e., to the same user secret) as the pseudonym.

Credential

A list of certified attributes issued by an Issuer to a User. By issuing a credential, the Issuer

vouches for the correctness of the contained attributes with respect to the User.

Credential specification

A data artifact specifying the list of attribute types that are encoded in a credential.

Data Controller

“'Controller' shall mean the natural or legal person, public authority, agency or any other body

which alone or jointly with others determines the purposes and means of the processing of

personal data...”, Art. 2 (d) of Directive 95/46/EC. In the area of Privacy-ABCs the Issuer,

Verifier, the Revocation Authority and the Inspector are Data Controllers with the respective

duties arising from the law.

Data Processor

“'Processor' shall mean a natural or legal person, public authority, agency or any other body

which processes personal data on behalf of the controller“, Art. 2 (e) of Directive 95/46/EC.

Data Controllers processes personal data on behalf of the data Controller.

Data Subject

A data subject is an identified or identifiable natural person, Art. 2 (a) of Directive 95/46/EC.

In the area of Privacy-ABCs the User and any other national person of which personal data is

processes is a data subject. Data subjects have data subjects’ rights assigned such as the right

of access, rectification, erasure and blocking, Art. 12 of Directive 95/46/EC.

Device binding

An optional credential feature whereby the credential is bound to a strong secret embedded in

a dedicated hardware device so that any presentation token involving the credential requires

the presence of the device.

Inspection

An optional feature allowing a presentation token to be de-anonymized by a dedicated

Inspector. At the time of creating the presentation token, the User is aware (through the

presentation policy) of the identity of the Inspector and the valid grounds for inspection.

Inspection grounds

The circumstances under which a Verifier may ask an Inspector to trace the User who created

a given presentation token.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 87 of 94 Public Final version 1.0

Inspection Requester

Entity requesting an inspection from the Inspector, asserting that inspection is compliant with

the inspection grounds specified or is legally required. In most cases this will be the Verifier,

but also may be the police, or other legally authorized entity.

Inspector

A trusted entity that can trace the User who created a presentation token by revealing

attributes from the presentation token that were originally hidden from the Verifier.

Issuance key

The Issuer’s secret cryptographic key used to issue credentials.

Issuer

The party who vouches for the validity of one or more attributes of a User, by issuing a

credential to the User.

Issuer parameters

A public data artifact containing cryptographic and other information by means of which

presentation tokens derived from credentials issued by the Issuer can be verified.

Linkability

See unlinkability.

Personal data

“‘Personal data' shall mean any information relating to an identified or identifiable natural

person ('data subject'); an identifiable person is one who can be identified, directly or

indirectly, in particular by reference to an identification number or to one or more factors

specific to his physical, physiological, mental, economic, cultural or social identity”, Art. 2 (a)

of Directive 95/46/EC. Within this deliverable personal data is the terminology used for legal

considerations. See also Personally Identifiable Information.

Personally Identifiable Information (PII)

Personally Identifiable Information is defined as any information about an individual

maintained by an [entity], including any information that can be used to distinguish or trace an

individual‘s identity, such as name, social security number, date and place of birth, and any

other information that is linked or linkable to an individual ([NIST10] p. 2-1). PII is a widely

used terminology for personal data in the domain of information security. Within this

document PII is used in relation to information security.

Presentation policy

A policy created and published by a Verifier specifying the class of presentation tokens that

the Verifier will accept. The presentation policy contains, among other things, which

credentials from which Issuers it accepts and which information a presentation token must

reveal from these credentials.

Presentation token

A collection of information derived from a set of credentials, usually created and sent by a

User to authenticate to a Verifier. A presentation token can contain information from several

credentials, reveal attribute values, prove that attribute values satisfy predicates, sign an

application-specific message or nonce or support advanced features such as pseudonyms,

device binding, inspection, and revocation. The presentation token consists of the presentation

token description, containing a technology-agnostic description of the revealed information,

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 88 of 94 Public Final version 1.0

and the presentation token evidence, containing opaque technology-specific cryptographic

parameters in support of the token.

Pseudonym

See verifiable pseudonym.

Pseudonym scope

A string provided in the Verifier’s presentation policy as a hint to the User which previously

established pseudonym she can use, or to which a new pseudonym should be associated. A

single User (with a single user secret) can generate multiple verifiable or certified pseudonyms

for the same scope string, but can only generate a single scope-exclusive pseudonym.

Revocation

The act of withdrawing the validity of a previously issued credential. Revocation is performed

by a dedicated Revocation Authority, which could be the Issuer, the Verifier, or an

independent third party. Which Revocation Authorities must be taken into account can be

specified by the Issuer in the issuer parameters (Issuer-driven revocation) or by the Verifier in

the presentation policy (Verifier-driven revocation).

Revocation Authority

The entity in charge of revoking credentials. The Revocation Authority can be an Issuer, a

Relying Party, or an independent entity. Multiple Issuers or Verifiers may rely on the same

Revocation Authority.

Revocation information

The public information that a Revocation Authority publishes every time a new credential is

revoked or at regular time intervals to allow Verifiers to check that a presentation token was

not derived from revoked credentials.

Revocation parameters

The public information related to a Revocation Authority, containing cryptographic

information as well as instructions where and how the most recent revocation information and

non-revocation evidence can be obtained. The revocation parameters are static, i.e., they do

not change every time a new credential is revoked or at regular time intervals like the

revocation information and non-revocation evidence (may) do.

Non-revocation evidence

The User-specific or credential-specific information that the user agent maintains, allowing it

to prove in presentation tokens that the credential was not revoked. The non-revocation

evidence may need to be updated either at regular time intervals or when new credentials are

revoked.

Scope

See pseudonym scope.

Scope-exclusive pseudonym

A certified pseudonym that is guaranteed to be cryptographically unique per scope string and

per user secret. Meaning, from a single user-bound credential, only a single scope-exclusive

pseudonym can be generated for the same scope string.

Traceability

See untraceability.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 89 of 94 Public Final version 1.0

Unlinkability

The property that different actions performed by the same User, in particular different

presentation tokens generated by the same User, cannot be linked to each other as having

originated from the same User.

Untraceability

The property that an action performed by a User cannot be traced back to her identity. In

particular, the property that a presentation token generated by a User cannot be traced back to

the issuance of the credential from which the token was derived.

User

The human entity who wants to access a resource controlled by a verifier and obtains

credentials from Issuers to this end.

User agent

The software entity that represents the human User and manages her credentials.

User binding

An optional credential feature whereby the credential is bound to an underlying user secret.

By requiring multiple credentials to be bound to the same user secret, one can prevent Users

from “pooling” their credentials.

User secret

A piece of secret information known to a User (either a strong random secret or a human-

memorizable password or PIN code) underlying one or more issued credentials or

pseudonyms. A presentation token involving a pseudonym or a user-bound credential

implicitly proves knowledge of the underlying user secret.

Verifiable pseudonym

A public identifier derived from a user secret allowing a User to voluntarily link different

presentation tokens created by her or to re-authenticate under a previously established

pseudonym by proving knowledge of the user secret. Multiple unlinkable pseudonyms can be

derived from the same user secret.

Verifier

The party that protects access to a resource by verifying presentation tokens to check whether

a User has the requested attributes. The Verifier only accepts credentials from Issuers that it

trusts.

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 90 of 94 Public Final version 1.0

Acronyms

ABCs

Attribute Based Credentials

ABCE

ABC Engine

CA

Certificate Authority

CE

Crypto Engine

ENISA

European Network and Information Security Agency

FP7

Framework Programme 7

HTTP

Hypertext Transfer Protocol

HTTPS

HyperText Transfer Protocol Secure (HTTP secured by TLS or SSL)

ID

Identifier

Idemix

IBM Identity Mixer

ICT

Information and Communications Technology

IdM

Identity Manager

ISO

International Organisation for Standardisation

IdSP

Identity Service Provider

PET

Privacy Enhancing Technology

PRIME

Privacy and Identity Management for Europe

PrimeLife

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 91 of 94 Public Final version 1.0

Privacy and Identity Management in Europe for Life

PIN

Personal Identification Number

RP

Relying Party

SCI

Smartcard Interface

SSL

 Secure Sockets Layer

STS

Secure Token Service

TLS

Transport Layer Security

URI

Uniform Resource Identifier

XML

eXtensible Markup Language

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 92 of 94 Public Final version 1.0

Bibliography

[Art29WP114] Article 29 Working Party, Working document on a common interpretation of Article 26(1) of

Directive 95/46/EC of 24 October 1995, Adopted on 25 November 2005, online:

http://ec.europa.eu/justice/policies/privacy/docs/wpdocs/2005/wp114_en.pdf.

[Art29WP118] Article 29 Working Party, Opinion 15/2011 on the definition of consent Adopted on 13 July

2011, online: http://ec.europa.eu/justice/policies/privacy/docs/wpdocs/2011/wp187_en.pdf.

[Art29WP169] Article 29 Working Party, Opinion 1/2010 on the concepts of ‘controller’ and ‘processor’

Adopted on 16 February 2010, online:

http://ec.europa.eu/justice/policies/privacy/docs/wpdocs/2010/wp169_en.pdf.

 [BCGS09] Patrik Bichsel, Jan Camenisch, Thomas Groß, and Victor Shoup. Anonymous credentials on

a standard java card. In Proceedings of the 16th ACM conference on Computer and

communications security, CCS ’09, pages 600–610, New York, NY, USA, 2009. ACM.

[BDDD07] Stefan Brands, Liesje Demuynck, and Bart De Decker. A practical system for globally

revoking the unlinkable pseudonyms of unknown users. In Proceedings of the 12th

Australasian conference on In- formation security and privacy, ACISP’07, pages 400–415,

Berlin, Heidelberg, 2007. Springer-Verlag.

[Bra93] Stefan Brands. Untraceable off-line cash in wallets with observers (extended abstract). In

CRYPTO, pages 302–318, 1993.

[Bra00] Stefan A. Brands. Rethinking Public Key Infrastructures and Digital Certificates: Building

in Privacy. MIT Press, Cambridge, MA, USA, 2000.

[BT08] Deutscher Bundestag, “Drucksache 16/10489: Entwurf eines Gesetzes über

Personalausweise und den elektronischen Identitätsnachweis sowie zur Änderung weiterer

Vorschriften”, Berlin, Germany 2008.

[Cam06] Jan Camenisch. Protecting (anonymous) credentials with the trusted computing group’s

TPM v1.2. In SEC, pages 135–147, 2006.

[CCS08] Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient protocols for set membership

and range proofs. In ASIACRYPT, pages 234–252, 2008.

[CG08] Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials. In ACM

Conference on Computer and Communications Security, pages 345–356, 2008.

[CHK+06] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and Mira

Meyerovich. How to win the clonewars: efficient periodic n-times anonymous

authentication. In ACM Conference on Computer and Communications Security, pages 201–

210, 2006.

[CHL06] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Balancing accountability and

privacy using e-cash (extended abstract). In SCN, pages 141–155, 2006.

[CKS09] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based on

bilinear maps and efficient revocation for anonymous credentials. In Public Key

Cryptography, pages 481–500, 2009.

[CKL+11] Jan Camenisch, Ioannis Krontiris, Anja Lehmann, Gregory Neven, Christian Paquin, Kai

Rannenberg, and Harald Zwingelberg. D2.1 Architecture for attribute-based credential

technologies - version 1. https://abc4trust.eu/index.php/pub/results/107-d21architecturev1,

2011.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous

credentials with optional anonymity revocation. In EUROCRYPT, pages 93–118, 2001.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient

revocation of anonymous credentials. In CRYPTO, pages 61–76, 2002.

https://abc4trust.eu/index.php/pub/results/107-d21architecturev1

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 93 of 94 Public Final version 1.0

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from

bilinear maps. In CRYPTO, pages 56–72, 2004.

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete

logarithms. In CRYPTO, pages 126–144, 2003.

[Cha82] David Chaum. Blind signatures for untraceable payments. In CRYPTO, pages 199–203,

1982.

[Cha85] David Chaum. Security without identification: Transaction systems to make big brother

obsolete. Commun. ACM, 28(10):1030–1044, 1985.

[DEF11] Digital Enlightenment Forum, The Future of European Electronic Identity Management,

Position Paper, 31 October 2011, Paris, France.

[ENISA09] European Network and Information Security Agency, Privacy Features of European eID

Card Specifications, Position Paper, February 2009, http://www.enisa.europa.eu/act/it/

privacy-and-trust/ eid/eid-cards-en

[FP11] Walter Fumy and Manfred Paeschke, editors. Handbook of eID Security: Concepts,

Practical Experiences, Technologies. John Wiley And Sons, February 2011.

[HoSch11] Leif-Erik Holtz, Jan Schallaböck. Legal Policy Mechanisms. In Jan Camenisch, Simone

Fischer-Hübner, Kai Rannenberg, editors, Privacy and Identity Management for Life,

343354, Springer Heidelberg, 2011.

[IDCorner] Stefan Brands, The ID Corner blog. The problem(s) with OpenID.

http://www.untrusted.ca/cache/openid.html.

[IMI1.0] OASIS Standard. Identity Metasystem Interoperability Version 1.0. 1 July 2009.

http://docs.oasis-open.org/imi/identity/v1.0/identity.html

[JWT] JSON Web Token (JWT). draft-jones-json-web-token-05. http://www.ietf.org/id/draft-jones-

json-web-token-05.txt

[Ngu05] Lan Nguyen. Accumulators from bilinear pairings and applications. In CT-RSA, pages 275–

292, 2005.

[OAuth1.0] The OAuth 1.0 Protocol. http://tools.ietf.org/html/rfc5849

[OAuth2.0] The OAuth 2.0 Authorization Protocol. http://tools.ietf.org/html/draft-ietf-oauth-v2 (draft

version 22 at time of writing)

[OAuthSAML2] Mortimore, C., "SAML 2.0 Bearer Assertion Profiles for OAuth 2.0", draft-ietf-oauth-

saml2-bearer-08 (work in progress), August 2011.

[OAuthWRAP] OAuth Web Resource Authorization Profiles. January 15, 2010.

http://tools.ietf.org/html/draft-hardt-oauth-01

[OIAE1.0] OpenID Attribute Exchange 1.0. December 5, 2007. http://openid.net/specs/openid-attribute-

exchange-1_0.html

[OpenID2.0] OpenID Authentication 2.0. December 5, 2007. http://openid.net/specs/openid-

authentication-2_0.html

[PseudoID] Arkajit Dey, Stephen Weis. PseudoID: Enhancing Privacy in Federated Login.

http://research.google.com/pubs/pub36553.html.

[RFC2119] Scott Bradner. RFC 2119: Key words for use in RFCs to Indicate Requirement Levels,

March 1997. http://www.rfc-editor.org/rfc/rfc2119.txt

[SAML2.0] OASIS, Assertions and Protocols for the OASIS Security Assertion Markup Language

(SAML) V2.0. 15 March 2005. http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-

os.pdf.

[Smart11] Smart N. (ed.). “ECRYPT II Yearly Report on Algorithms and Keysizes (2010-2011)”.

Katholieke Universiteit Leuven (KUL). Deliverable SPA-17. rob June, 2011. Online:

http://www.ecrypt.eu.org/documents/D.SPA.17.pdf

http://www.enisa.europa.eu/act/it/
http://www.untrusted.ca/cache/openid.html
http://docs.oasis-open.org/imi/identity/v1.0/identity.html
http://www.ietf.org/id/draft-jones-json-web-token-05.txt
http://www.ietf.org/id/draft-jones-json-web-token-05.txt
http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/draft-ietf-oauth-v2
http://tools.ietf.org/html/draft-hardt-oauth-01
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://research.google.com/pubs/pub36553.html
http://www.rfc-editor.org/rfc/rfc2119.txt
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://www.ecrypt.eu.org/documents/D.SPA.17.pdf

ABC4Trust Heartbeat H2.1

Deliverable H2.1.doc Page 94 of 94 Public Final version 1.0

[UPWTP] U-Prove WS-Trust Profile V1.0. March 2011. http://www.microsoft.com/u-prove.

[WS-Trust14] OASIS Standard. WS-Trust 1.4, February 2nd 2009. http://docs.oasis-open.org/ws-sx/ws-

trust/v1.4/ws-trust.html.

[WSFed] OASIS. Web Services Federation Language (WS-Federation) Version 1.2. OASIS Standard.

22 May 2009. http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-

os.html

[WSSecPol] OASIS. WS-SecurityPolicy 1.2. 30 April 2007. http://docs.oasis-open.org/ws-sx/ws-

securitypolicy/200702/ws-securitypolicy-1.2-spec-cs.html

[WSTrust] OASIS. WS-Trust 1.4. 2 February 2009. http://docs.oasis-open.org/ws-sx/ws-

trust/v1.4/os/ws-trust-1.4-spec-os.html

[X509] ITU-T. X.509 : Information technology – Open systems interconnection – The Directory:

Public-key and attribute certificate frameworks. http://www.itu.int/rec/T-REC-X.509/en

[XACML20] OASIS Standard. eXtensible Access Control Markup Language (XACML) Version 2.0,

February 1, 2005. http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-

os.pdf

[XMLSchema2] W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, 28 October 2004.

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.

[XMLSignature] D. Eastlake et al. XML-Signature Syntax and Processing. World Wide Web Consortium,

February 2002. http://www.w3.org/TR/xmldsig-core/.

[Zwi11] Harald Zwingelberg. Necessary processing of personal data: The need-to-know principle

and processing data from the new german identity card. In Simone Fischer-Hbner, Penny

Duquenoy, Marit Hansen, Ronald Leenes, and Ge Zhang, editors, Privacy and Identity

Management for Life, volume 352 of IFIP Advances in Information and Communication

Technology, pages 151–163. Springer Boston, 2011.

http://www.microsoft.com/u-prove
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-cs.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-cs.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.html
http://www.itu.int/rec/T-REC-X.509/en
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/xmldsig-core/

