
Attribute-Based Credentials for Trust

D3.1
Scientific Comparison of ABC Protocols

Part I – Formal Treatment of Privacy-Enhancing Credential Systems

Jan Camenisch, Stephan Krenn,
Anja Lehmann, Gert Læssøe Mikkelsen,

Gregory Neven, Michael Østergaard Pedersen

Editors: Stephan Krenn (IBM Research – Zurich)
Anja Lehmann (IBM Research – Zurich)

Reviewers: Jonas Lindstrøm Jensen (Alexandra Institute AS)
Berit Skjernaa (Alexandra Institute AS)

Identifier: D3.1

Type: Deliverable

Version: 1.0

Date: 30/06/2014

Status: Final

Class: Public

Abstract

We provide a formal treatment of Privacy-ABC systems by defining their syntax and security properties, resulting
in the most comprehensive definitional framework for PABCs so far. We present and prove secure a generic and
modular construction of a PABC system from simpler building blocks, allowing for a “plug-and-play” composition
based on different instantiations of the building blocks. Finally, we give secure instantiations for each of the
building blocks.

The research leading to these results has received funding from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n° 257782 for the project Attribute-based Credentials for
Trust (ABC4Trust) as part of the “ICT Trust and Security Research” theme.

ABC4Trust Deliverable D3.1 Part I

Members of the ABC4TRUST consortium

1. Alexandra Institute AS ALX Denmark

2. CryptoExperts SAS CRX France

3. Eurodocs AB EDOC Sweden

4. IBM Research – Zurich IBM Switzerland

5. Johann Wolfgang Goethe – Universität Frankfurt GUF Germany

6. Microsoft Belgium NV MS Belgium

7. Miracle A/S MCL Denmark

8. Nokia-Siemens Networks Management International GmbH NSN Germany

9. Research Academic Computer Technology Institute CTI Greece

10. Söderhamn Kommun SK Sweden

11. Technische Universität Darmstadt TUD Germany

12. Unabhängiges Landeszentrum für Datenschutz ULD Germany

Disclaimer: The information in this document is provided "as is", and no guarantee or warranty is given that
the information is fit for any particular purpose. The above referenced consortium members shall have no
liability for damages of any kind including without limitation direct, special, indirect, or consequential
damages that may result from the use of these materials subject to any liability which is mandatory due to
applicable law.

Copyright 2014 by Alexandra Institute AS, IBM Research – Zurich, and Miracle A/S.

2

ABC4Trust Deliverable D3.1 Part I

List of Contributors

Chapter Author(s)

Executive Summary

Jan Camenisch (IBM Research – Zurich)
Stephan Krenn (IBM Research – Zurich)
Anja Lehmann (IBM Research – Zurich)
Gert Læssøe Mikkelsen (Alexandra Institute AS)
Gregory Neven (IBM Research – Zurich)
Michael Østergaard Pedersen (Miracle A/S)

Introduction

Preliminaries

Privacy ABC Systems

Building Blocks

Generic Construction of PABCs

Security of the Generic Construction

Secure Instantiations of Building Blocks

Security of Instantiation

Conclusion

3

ABC4Trust Deliverable D3.1 Part I

4

ABC4Trust Deliverable D3.1 Part I

Executive Summary

Privacy-enhancing attribute-based credentials (PABCs) are the core ingredient to privacy-friendly authentication
systems, allowing users to obtain credentials on attributes and prove possession of these credentials in an
unlinkable fashion while revealing only a subset of the attributes. To be useful in practice, however, PABCs
typically need additional features such as i) revocation, ii) pooling prevention by binding credentials to users’
secret keys, iii) pseudonyms as privacy-friendly user public keys, iv) proving equality of attributes without
revealing their values, v) or advanced issuance where attributes can be “blindly” carried over into new
credentials. Provably secure solutions exist for most of these features in isolation, but it is unclear how they can
be securely combined into a full-fledged PABC system, or even which properties such a system would aim to
fulfill.

We provide a formal treatment of PABC systems supporting the mentioned features by defining their syntax and
security properties, resulting in the most comprehensive definitional framework for PABCs so far. Unlike
previous efforts, our definitions are not targeted at one specific use-case; rather, we try to capture generic
properties that can be useful in a variety of scenarios. We believe that our definitions can also be used as a
starting point for diverse application-dependent extensions and variations of PABCs. We present and prove
secure a generic and modular construction of a PABC system from simpler building blocks, allowing for a “plug-
and-play” composition based on different instantiations of the building blocks. Finally, we give secure
instantiations for each of the building blocks, including in particular instantiations based on CL- and Brands-
signatures which are the core of the Idemix and U-Prove protocols.

5

Table of Contents

1 Introduction . 9
1.1 Contributions . 9
1.2 Use Case: eIDs and Online Casinos . 11
1.3 Related Work . 11

2 Preliminaries . 13
2.1 Notation . 13
2.2 Cryptographic Background . 13

3 Privacy ABC Systems . 21
3.1 Syntax. 21
3.2 Oracles for Our Security Definitions . 23
3.3 Security Definitions for PABC-Systems . 24

4 Building Blocks . 30
4.1 Global Setup . 30
4.2 Commitment Schemes . 30
4.3 Privacy-Enhancing Attribute-Based Signatures . 32
4.4 Revocation Schemes . 38
4.5 Pseudonyms . 40

5 Generic Construction of PABCs . 43
5.1 Intuition . 43
5.2 Formal Description of the Construction . 43

6 Security of the Generic Construction . 46
6.1 Correctness . 46
6.2 Pseudonym Collision-Resistance . 46
6.3 Unforgeability . 46
6.4 Simulatable Privacy . 48

7 Secure Instantiations of Building Blocks . 52
7.1 Global System Parameter Generation . 52
7.2 A Commitment Scheme based on Pedersen Commitments . 52
7.3 A PABS-Scheme Based on CL-Signatures . 53
7.4 A PABS-Scheme Based on Brands’ Signatures . 55
7.5 A Revocation Scheme Based on the Nakanishi et al. Scheme 57
7.6 A Pseudonym Scheme . 59

8 Security of Instantiation . 60
8.1 Security Proofs of Commitment Scheme . 60
8.2 Security Proofs of PABS-Scheme Based on CL Signatures . 60
8.3 Security Proofs of PABS-Scheme Based on Brands’ Signatures 62
8.4 Security Proofs of Revocation Scheme . 65
8.5 Security Proofs of Pseudonym Scheme . 66

9 Conclusion . 68

List of Abbreviations

CL Camenisch-Lysyanskaya
DDH Decisional Diffie-Hellman
IND-CPA Indistinguishability under Chosen-Plaintext Attacks
PABC Privacy-Enhancing Attributed-Based Credential
PABS Privacy-Enhancing Attribute-Based Signature
PoK Proof of Knowledge
UF-CMA Unforgeability under Chosen-Message Attacks
ZK Zero-Knowledge

Chapter 1

Introduction

Privacy-enhancing attributed-based credentials systems (privacy ABCs or PABCs, also known
as anonymous credentials or pseudonym systems) allow for cryptographically strong user au-
thentication while preserving the users’ privacy by giving users full control over the information
that they reveal. There are three types of parties a PABC system: users who obtain credentials
from issuers certifying a set of attribute values. They can then present these credentials to
verifiers in an unlinkable manner, while revealing only a subset of the attributes from one or
more credentials. The verifier can check the validity of the claimed attribute values using the
issuers’ public keys.

The importance of privacy and data minimization in authentication systems has been em-
phasized, e.g., by the European Commission in the European privacy standards [PotEU01,Po-
tEU09] and by the US government in the National Strategy for Trusted Identities in Cyberspace
(NSTIC) [Sch10]. With IBM’s identity mixer based on CL-signatures [CH02,CL01,CL02,CL04],
and Microsoft’s U-Prove based on Brands’ signatures [Bra99, PZ13] practical solutions for
privacy-ABCs exist and are currently deployed in several pilot projects [ABC, IRM, Tea10,
Cor11]. Despite this large body of work, however, a unified approach in terms of security defi-
nitions for PABC systems is still missing. Rather, existing schemes are either proved secure for
very use-case-specific definitions [CL01, BCC+09, GGM13, CMZ13] or do not provide provable
security guarantees at all [PZ13,NP13,Zav13].

One reason for the lack of a generic framework might be that schemes tweaked for spe-
cific scenarios are often more efficient than generic solutions. However, given the complexity of
PABC’s, defining, instantiating and re-proving a tailored PABC-variant for every use case is not
desirable either. We believe that this is one of the hurdles on the way of PABCs to practice.
We take a major step towards such a unified theoretical framework by formally defining the
characteristic properties of PABC systems, detached from specific instantiations or use-cases.
To ease the design of such schemes, we also define a number of more standard, and easier-to-
prove, building blocks, and present a generic construction that securely composes the building
blocks into a full-fledged PABC system. Finally, we sketch concrete instantiations of the single
components. We believe that our framework comprises the most relevant features of a PABC
system, and that it can act as a solid foundation for further extensions.

1.1 Contributions

Our definition of PABC systems comprises the richest feature set of holistic PABC schemes
presented thus far. In particular, it supports the following features:

Attributes: A credential may contain any fixed number of attributes. Any subset of these at-
tributes can be revealed at presentation.

Revocation: Issuers can revoke credentials, excluding them from being used in future presenta-
tions.

Multi-credential presentations and equality predicates: A single presentation can be based on
several credentials. The user can prove equality of attribute values from different credentials
without revealing the value.

Key binding: Credentials can be bound to a user’s secret key, so that in multi-credential pre-
sentations, the verifier is ensured that all credentials belong to the same user.

9

10 1. Introduction

Advanced and blind issuance: Attributes can be issued blindly, without the issuer learning their
value. They can also be carried over from existing credentials, meaning that the issuer is
guaranteed that it is equal to an attribute in an existing credential.

Pseudonyms: Users can derive pseudonyms from their secret keys that are unique for a given
scope string (e.g., the verifier’s identity), but that are unlinkable across scopes. Users can
obtain credentials under one pseudonym, and later prove possession of the credential under
a different pseudonym.

In terms of security, informally unforgeability and either privacy or weak privacy should be
satisfied:

Unforgeability: Users can only perform presentations for attributes they got previously certified
by an issuer and if the credential has not yet been revoked.

Privacy: A verifier does not learn more information from a presentation than what is intention-
ally revealed by the user. Also, a presentation session cannot be linked to the corresponding
issuance session. Finally, depending on the required flavor of privacy, multiple presentations
of the same (set of) credential(s) should be unlinkable.

Weak privacy: A verifier does not learn more information from a presentation than what is
intentionally revealed by the user. Also, a presentation session cannot be linked to the
corresponding issuance session. However, in weak privacy no guarantee is given regarding
unlinkability, so it might be possible for verifies to link presentations done with the same
credential.

Weak privacy is implied by privacy, so schemes fulfilling the privacy property also fulfills
the weak privacy property.

While intuitively these properties are rather clear, defining them formally is far from trivial.
This is because our aimed system is very complex, e.g., allowing the user to obtain credentials
on (i) revealed, (ii) blindly carried-over and (iii) fully blind attributes. Each type comes with
different security expectations that must be covered by a single definition. For instance, carry-
over attributes presented a challenge in the unforgeability definition: While the issuer never
learns these attributes, they must provide essentially the same security guarantees as attributes
that the issuer has signed in clear. So how can we later distinguish a forgery from a legitimately
obtained credential? For privacy, one challenge was to formalize the exact information users
intend to reveal, as they might reveal the same and possibly identifying attributes in different
presentation tokens. Also, supporting revocation gives the issuer additional power that needed
to be covered in a way that reflects the capabilities of the issuer but without introducing trivial
“linking attacks” that would rule out any privacy guarantees.

Consequently, the resulting definitions are rather complex, and directly proving that a con-
crete scheme satisfies them from scratch can be very challenging and tedious. Also such direct
proofs typically give hardly any modularity and thus tend to be hard to verify. We thus also
define a set of building blocks, strongly inspired by existing work, and show how they can be
generically composed to build secure PABC-systems. Our construction is efficient in the sense
that its complexity is roughly the sum of the complexities of the building blocks. Additionally, it
allows for simple changes of individual components, e.g., the underlying revocation scheme can
be replaced by any instantiation that meets the described security properties of the revocation
building block without affecting any other blocks and without having to reprove the security of
the entire scheme.

Finally, we discuss concrete instantiations for all our building blocks based on existing proto-
cols. The ”core” building block of privacy-enhancing attribute-based signatures relies on either
CL-signatures [CL02] or Brands signatures [Bra93] and the presented revocation scheme is a

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 11

variant of the scheme of Nakanishi et al. [NFHF09]. The commitment scheme is a direct combi-
nation of the commitment scheme Pedersen [Ped91], its generalization to an integer commitment
scheme by Damg̊ard and Fujisaki [DF02] and the zero-knowledge proofs of knowledge by Fujisaki
et al. [FO97,DF02].

1.2 Use Case: eIDs and Online Casinos

In the following we sketch a scenario that could be realized using our framework, that shows
how PABCs could be used in the real world.

An important use case for PABC systems are government-issued electronic identity cards
(eIDs), in particular systems that enable privacy-friendly transfer of certified attributes to third
parties, much like the German eID already envisages today. However, instead of only having
limited anonymity (users of the German eID are only anonymous among a set of a couple of
thousand citizens), full anonymity is desirable. While revocation is obviously a crucial feature
for any large-scale eID system, also other features offered by our framework might be useful
in such a setting. For instance, scope-exclusive pseudonyms open the way to interesting new
use cases, such as anonymous opinion polls: To cast a vote in the poll, the government requires
a valid eID to be used with a scope-exclusive pseudonym, using an identifier for the poll as
the scope string (e.g., its URL). This allows to detect repetitive vote casts by the same user,
and depending on the scenario, such votes could either replace previous ones or be discarded.
Citizens can thus rest assured that the government does not learn how they voted, while the
result of the poll cannot be biased by voting multiple times.

For security reasons, government eIDs may be bound to hardware tokens such as smart cards,
which is not convenient for all use cases. Thus, for slightly less security-demanding applications,
third parties can use advanced issuing to issue software-only PABC credentials based on a user’s
eID. For example, online casinos could issue their own credentials based on a valid eID showing
that the holder is of legal gambling age, while dropping a scope-exclusive pseudonym to ensure
that each person has at most one valid casino credential at any time. Customers can later
anonymously enter the casino by showing a valid casino credential. One could blindly carry
over attributes such as gender and birth date from the eID to the casino credential, so that
customers can voluntarily reveal these attributes in particular sessions, e.g., to claim special
promotions for birthdays, ladies’ nights or senior citizens. Problematic gamblers can have their
casino credential revoked so they will be effectively banned from the casino, without revealing
their identity. Because of the scope-exclusiveness of the pseudonyms used for issuance, they will
not be able to cheat themselves by getting a new credential based on their eID re-issued.

The casino may want to ensure that any winnings can only be transferred to credit cards
that belong to the same person as the casino credential. If the credit card is a PABC credential
as well, one could blindly carry over the customer’s name onto the casino credential, and when
he wants to cash in, provide a fresh pseudonym and prove that the name on his casino credential
is the same as the one on his credit card (using a multi-credential presentation with equality
proof). The casino signs a statement in which it agrees to transfer a certain amount of money
to that pseudonym, which the user can take to the bank. Doing so, the casino does not learn
the customer’s identity even at payout. If required by law, e.g., to prevent money laundering,
the casino could also insist that the customer reveals his name for any amounts greater than a
certain threshold.

1.3 Related Work

Our definitions are strongly inspired by the work of Chase et al. [Cha08,BCC+09], who provide
formal, so-called property-based definitions of delegatable anonymous credential systems and
give a generic construction from P-signatures [BCKL08]. Their work, however, focuses solely on

12 1. Introduction

pseudonymous access control with delegation, and lacks additional features such as attributes,
revocation, and advanced issuance (which allows one to issue a credential containing some
attribute values for presented credential without the issuer become privy of these values).

PABCs were originally envisioned by Chaum [Cha81,Cha85], and subsequently a large num-
ber of schemes have been proposed. The currently most prevalent solutions are IBM’s Identity
Mixer based on CL-signatures [CH02, CL01, CL02, CL04] and Microsoft’s U-Prove based on
Brands’ signatures [Bra99, PZ13]. A first formal definition in the ideal-real world paradigm is
by Camenisch and Lysyanskaya [CL01], who covered the basic functionalities but neither sup-
ported attributes nor revocation. Moreover, their definition does not allow composability as
honest parties never output any cryptographic value such as a credential or pseudonym. This
limitation makes it infeasible to use their definitions and schemes as building block in a larger
system. These drawbacks are shared by the definition of Garman et al. [GGM13].

A recent MAC-based credential scheme [CMZ13] allows for multiple attributes per creden-
tial, but requires that the issuer and verifier are the same entity. Furthermore, it does not cover
pseudonyms, carry-over attributes, or revocation and provides rather informal security defini-
tions. Another recent work [BL13a] defines an efficient blind signature scheme with attributes
and claims that it yields an efficient linkable anonymous credential scheme, but without provid-
ing formal definitions. Their scheme can be seen as a weakened version of our signature building
block, as it does not guarantee unlinkability nor extractability of hidden attribute values. Both
of these properties are crucial for use in our PABC system.

Chapter 2

Preliminaries
In the following we first introduce some notation, and then recap the cryptographic background
required for the rest of this document. Readers familiar with the topic may safely skip this
section upon first reading, and come back to the definitions whenever necessary.

2.1 Notation

Algorithms and parties are denoted by sans-serif fonts, e.g., A,B. For deterministic algorithms
we write a← A(in), if a is the output of A on inputs in. If A is probabilistic, we write a←$ A(in).
For an interactive protocol (A,B) let (outA, outB)← 〈A(inA),B(inB)〉(in) denote that, on private
inputs inA to A, inB to B and common input in, A and B obtained outputs outA and outB,
respectively.

Let ε be the empty string or empty list, depending on the context. For a set S, s←$ S denotes
that s is drawn uniformly at random from S. We write Pr[E : Ω] to denote the probability
of event E over the probability space Ω. For example, Pr[f(x) = 1 : x ←$ {0, 1}k] is the
probability that f(x) = 1 if x is drawn uniformly at random in {0, 1}k. We write vectors as
#„x = (xi)

k
i=1 = (x1, . . . , xk).

A negligible function ν : N→ R vanishes faster than every inverse polynomial, i.e., for every
k there exists an nk such that for all n > nk we have that ν(n) < 1

nk
.

For a positive integer n, Z∗n and QRn denote the multiplicative group and the group of
quadratic residues modulo n, respectively.

Let ±{0, 1}k be [−2k + 1, 2k − 1] ∩ Z, and P be the set of primes.

Throughout the paper, κ denotes the main security parameter.

2.2 Cryptographic Background

We next recap the notions of zero-knowledge proofs of knowledge, semantically secure encryp-
tion, and signatures that are unforgeable under chosen message attacks. For each of the primi-
tives we also recap basic instantiations that we are using for the constructions in the subsequent
sections.

2.2.1 Zero-Knowledge Proofs of Knowledge

Informally, a zero-knowledge (ZK) proof of knowledge (PoK) is a two-party protocol between a
prover and a verifier which allows the former to convince the latter that it knows some secret
piece of information, without revealing anything else than what the claim already reveals. For
a formal definition we refer to Bellare and Goldreich [BG92].

Our constructions make use of ZK proofs of knowledge of discrete logarithms and related
problems. We use the standard notation introduced by Camenisch and Stadler [CS97] to denote
such proof goals. For instance, the expression:

ZKP
[
(α, β, γ) : y1 = gα1 h

β
1 ∧ y2 = gα2 h

γ
2 ∧ (L < α < R)

]
denotes a zero-knowledge proof of knowledge of values α, β, γ such that the given relations are
satisfied. We follow the convention that knowledge of values denoted by Greek letters has to be
proved, while all other values are assumed to be public.

13

14 2. Preliminaries

Prover[y, x] Verifier[y]

r ∈ D
t = φ(r)

t -
c←$ {0, 1}κc

c�
s = r + cx

s -
accept, iff tyc = φ(s)

Fig. 1: Σ-protocol for proving y = φ(x)

There exist efficient techniques for proving knowledge of discrete algorithms in groups of
known and hidden order [Sch91,DF02,FO97], for demonstrating linear and multiplicative rela-
tions among secret values [Bra97, FO97], for showing that secrets lie in some interval [Bou00,
Lip03,CFT98,CM99], and arbitrary Boolean compositions of such statements [CDS94].

All interval claims we will deploy can be realized virtually for free by accepting a small
soundness gap, i.e., an honest user has to use witnesses from a slightly smaller interval than
what the verifier is ensured.

Σ-Protocols for Group Homomorphisms. Figure 1 recaps how a proof goal ZKP[(χ) :
y = φ(χ)] can be realized for a group homomorphism φ : G → H. The computational costs for
either party are essentially given by one evaluation of φ, and the communication complexity is
roughly of the size of the public image y.

If the domain G of φ is finite, we can set D = G and the protocol is perfectly zero-knowledge.
Otherwise, if G = Zd and x = (x1, . . . , xd), we can set D =

∏d
i=1±{0, 1}`i+κzk , where `i is a

publicly known upper bound on the bitlength of xi, and κzk is a security parameter controlling
the zero-knowledge property of the protocol. In this latter case, fuzzy interval checks can be
performed by additionally checking that s lies in some integer interval, cf. [DF02,CKY09].

It can be shown that every Σ-protocol is zero-knowledge against honest-but curious verifiers,
and a proof of knowledge with knowledge error 1/2 if κc = 1. Most proof goals used in practice,
and all proof goals used in this document, achieve a knowledge error of 2−κc also for larger κc,
such that a negligible knowledge error can already be achieved in one run of the protocol. For
a detailed discussion on the choice of κc we refer to the original literature.

The homomorphisms used in this document are the following:

• For Pedersen commitments (§ 7.2), we have:

φ : Z2 → Z∗n : (m, r) 7→ gmhr ,

and `1 is the bitlength of the longest message to be committed to and `2 is the bitlength of
the longest possible randomness. The mapping for CL-signatures (cf. § 2.2.3) is similar.

• For Paillier encryptions (§ 2.2.2), we have:

φ : Zn × Z∗n → Z∗n2 : (m, r) 7→ gmrn .

• Product homomorphisms of the previous types.

Σ-protocols can be made non-interactive in the random oracle model by substituting the
verifier’s message c by a call to the random oracle on input t, i.e., c = H(t). By doing so, the
resulting protocol can also be proved secure against arbitrary adversaries.

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 15

By setting c = H(t,M), a signature proof of knowledge for message M can be obtained,
cf. Fiat and Shamir [FS87], for which we use the following notation:

ZKPFS [(α, β, γ) : . . .] (M)

denotes the Fiat-Shamir transformation [FS87] of the Σ-protocol for the given statement on
message M. More formally, it denotes the following:

• First, a Σ-protocol for the given statement is constructed.
• Using the notation from Figure 1, instead of letting the verifier choose c ←$ {0, 1}κc , the

prover computes the challenge as c← H(y, t,M), where H is a random oracle.
• The prover outputs (c, s).
• The verifier accepts, if and only H(y, t′,M) = c, where t′ = φ(s)y−c.

Non-Interactive Zero-Knowledge and Proofs of Knowledge. In the following we re-
cap the notions of non-interactive zero-knowledge proofs and proofs of knowledge. For a more
detailed discussion we refer to, e.g., De Santis et al. [SCO+01].

Informally, a non-interactive zero-knowledge proof lets a prover generate a proof π claiming
that some x ∈ L for an NP-language L. On the one hand, a malicious prover should not be
able to cheat the verifier if x /∈ L, while on the other hand π should not allow the verifier
to perform computations it could not have done before. A proof of knowledge ensures the
verifier not only that x ∈ L, but also that the prover actually knows a witness w ∈ W (x)
for x, i.e., to convince the verifier the prover needs to know w such that (x,w) ∈ R, where
R = {(x,w) : x ∈ L,w ∈W (x)}.

Definition 2.1 (Non-interactive zero-knowledge proof). A protocol (SPGen,P,V) is a
non-interactive zero-knowledge proof system for a language L ∈ NP, if all algorithms run in
probabilistic polynomial time, and if there exists a negligible function ν such that the following
conditions are satisfied for all κ:

Correctness. For all x ∈ L of length κ and all witnesses w such that (x,w) ∈ R it holds that:

Pr[V(x,P(x,w, spar), spar) = accept : spar←$ SPGen(1κ)] = 1 .

Soundness. For all PPT adversaries A the following holds:

Pr[V(x, π, spar) = accept ∧ x /∈ L : spar←$ SPGen(1κ), (x, π)←$ A(spar)] ≤ ν(κ) .

Zero-Knowledge. There exists a PPT algorithm S = (S1,S2), called simulator, such that for all
non-uniform PPT adversaries A we have that:∣∣Pr[AP(·,·,spar)(spar) = 1 : spar←$ SPGen(spar)]−

Pr[AS′2(·,·,spar,τ)(spar) = 1 : (spar, τ)←$ S1(1
κ, spar)]

∣∣ ≤ ν(κ) ,

where S′2(·, ·, spar, τ) removes all secret inputs, forwards the public inputs to S2(·, spar, τ),
and returns whatever S2 returns.

Definition 2.2 (Non-interactive proof of knowledge). A protocol (SPGen,P,V) is a non-
interactive proof of knowledge for a language L ∈ NP, if all algorithms run in probabilistic
polynomial time, and if there exists a negligible function ν such that the following conditions
are satisfied for all κ:

Correctness. For all x ∈ L of length κ and all witnesses w such that (x,w) ∈ R it holds that:

Pr[V(x,P(x,w, spar), spar) = accept : spar←$ SPGen(1κ)] = 1 .

16 2. Preliminaries

Experiment IND− CPAA(1κ):
(esk, epk)←$ EncKGen(1κ)
b←$ {0, 1}
(m0,m1, st)←$ A1(epk)
c = Enc(epk,mb)
b′ ←$ A2(st, c)
Return 1 if and only if:
b = b′.

Fig. 2: IND− CPAA(1κ)

Soundness. For all PPT adversaries A the following holds:

Pr[V(x, π, spar) = accept ∧ x /∈ L : spar←$ SPGen(1κ), (x, π)←$ A(spar)] ≤ ν(κ) .

Extractability. There exists a PPT algorithm E = (E1,E2), called the knowledge extractor, such
that the following is satisfied:

• E1 outputs parameters and trapdoors, such that the parameters are indistinguishable from
correctly computed system parameters:

{spar : spar←$ SPGen(1κ)} ∼ {spar : (spar, τ)←$ E1(1
κ)}, and

• for every efficient adversary A there exists a negligible function ν such that the following
holds:

Pr[V(x, π, spar) = accept ∧ (x,w′) /∈ R :

(spar, τ)←$ E1(1
κ), (x, π)←$ A(spar), w′ ←$ E2(spar, τ, x, π)] ≤ ν(κ).

Finally, we say that a protocol is a non-interactive zero-knowledge proof of knowledge, if it
simultaneously satisfies Definitions 2.1 and 2.2.

2.2.2 Semantically Secure Encryption

A public key encryption scheme is a triple of algorithms (EncKGen,Enc,Dec) defined as follows:
On input 1κ, EncKGen outputs a secret key/public key pair (esk, epk). The encryption algorithm
Enc takes the public key epk and a message m from some message space M, and outputs a
ciphertext c. Finally, the decryption algorithm Dec takes the secret key esk and a ciphertext c
and returns a message m′ ∈M∪ {⊥}.

Definition 2.3. An encryption scheme (EncKGen,Enc,Dec) is called IND-CPA (or semanti-
cally) secure for a message space M, if the following properties hold:

Correctness. For every m ∈ M we have that Dec(esk,Enc(epk,m)) = m whenever (esk, epk) ←$
EncKGen(1κ).

Semantic security. For every PPT adversary A = (A1,A2) there exists a negligible function ν
such that

Pr[IND− CPAA = 1] ≤ 1/2 + ν(κ) ,

where the experiment IND− CPAA is defined as in Figure 2.

We will sometimes write Enc(m; r) to make the randomness being used explicit.

The Paillier Encryption Scheme. The Paillier encryption scheme [Pai99] is defined as de-
scribed in the following.

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 17

Key generation. On input 1κ, EncKGen computes κn according to [Blu13] for security level κ. It
then chooses two primes p, q of length κn/2 and sets n = pq as well as γ = lcm(p−1, q−1). It
further selects g ←$ Z∗n2 such that n| ord(g) and sets µ = (L(gγ mod n2))−1 mod n, where
L(u) = u−1

n and division is done over the integers1. It outputs

(esk, epk) = ((γ, µ, n), (n, g)) .

Encryption. Encryption of a message m ∈ Zn is done as follows:

Enc(epk,m) = gmrn mod n2 for r ←$ Z∗n .

Decryption. Decryption of a ciphertext c is defined as:

Dec(esk, c) = L(cγ mod n2)µ mod n .

It can be shown that the Paillier encryption scheme is IND-CPA secure under the quadratic
residuosity assumption defined next:

Definition 2.4 (Quadratic Residuosity Assumption). Let n be a random safe RSA mod-
ulus, and X ⊇ QRn be the subgroup of elements from Z∗n with Jacobi symbol equal to 1. The
quadratic residuosity assumption then states that for x←$ X it is computationally infeasible to
decide whether or not x ∈ QRn.

2.2.3 Digital Signatures

A digital signature scheme is a triple of algorithms (SignKGen,Sign,SignVf) defined as follows:
On input 1κ, SignKGen outputs a secret key/public key pair (ssk, spk). The signing algorithm
Sign takes the secret key ssk and a message m from some message space M, and outputs a
signature sig. Finally, the verification algorithm SignVf takes the public key spk, a message m,
and a signature sig and returns a accept or reject.

Definition 2.5. A signature scheme (SignKGen, Sign, SignVf) is called existentially (or weakly)
UF-CMA (unforgeable under adaptive chosen-message attacks) secure for a message space M,
if the following properties hold:

Correctness. For every m ∈ M we have that SignVf(spk,m,Sign(ssk,m)) = accept whenever
(ssk, spk)←$ SignKGen(1κ).

Existential unforgeability under chosen-message attacks. For every PPT adversary A there ex-
ists a negligible function ν such that

Pr[UF− CMAA = 1] ≤ ν(κ) ,

where the experiment UF− CMAA is defined as in Figure 3. There, the signing oracle O(ssk, ·)
takes messages m from M as inputs, adds m to the initially empty list L, and returns
sig←$ Sign(ssk,m) to the adversary.

Camenisch-Lysyanskaya Signatures. We next recap the Camenisch-Lysyanskaya (CL) sig-
nature scheme [CL02], for which we need the following computational assumption [BP97,FO97]:

Definition 2.6 (Strong RSA Assumption). For a random strong RSA modulus n, i.e.,
n = pq, where p, q, p−12 , q−12 are all prime, and a random g ←$ Z∗n, it is computationally hard to
find e > 1 and h ∈ Z∗n such that g = he mod n.

1 This is possible since gγ ≡ 1 mod n

18 2. Preliminaries

Experiment UF− CMAA(1κ):
(ssk, spk)←$ SignKGen(1κ)
(m∗, sig∗)←$ AO(ssk,·)(spk)
Return 1 if and only if:

SignVf(spk,m∗, sig∗) = accept, and
m∗ /∈ L.

Fig. 3: UF− CMAA(1κ)

It can then be shown that under this assumption the following signature scheme for a block
of L messages is secure against adaptive chosen message attacks [CL02]:

Key generation. On input of security parameter κn, choose a strong RSA modulus for which
p and q have length κn/2, and choose R1, . . . , RL, Z, S ←$ QRn. The public key is given by
spk = (R1, . . . , RL, Z, S, n), and the secret key is given by ssk = p.

Signing. To sign a tuple (m1, . . . ,mL) ∈ ±{0, 1}`m of messages, choose a random prime e of
length `e > `m+2, as well as v ∈ {0, 1}κn+`m+κv , where κv is a security parameter. Compute:

A =

(
Z

Sv
∏L
i=1R

mi
i

)1/e

.

The signature is given by (e,A, v).
Verification. Given messages m1, . . . ,mL and a signature (e,A, v), check that mi ∈ ±{0, 1}`m ,

2`e−1 < e < 2`e , and

Z = AeSv
L∏
i=1

Rmii .

One feature of the CL-signature scheme is that it allows one to prove possession of a signa-
ture, without revealing any other information about it. In particular, none of the values e,A, v
needs to be made public, and thus such proofs can be made unlinkable. This is achieved through
re-randomization: for a valid signature (e,A, v), the triple (e,A′ = AS−r, v′ = v+ er) can easily
be seen to also be a valid signature. Now, as n is a strong RSA modulus, if A ∈ 〈S〉 (which is the
case with overwhelming probability), and if r was chosen uniformly from {0, 1}κn+1, we have
that A′ is statistically close to uniform over Z∗n. Thus, to prove possession of a valid signature,
the user can always re-randomize (e,A, v), reveal A′, and run the following protocol:

ZKP

[
(ε, ν ′, µ1, . . . , µL) : Z = ±A′εSν′

L∏
i=1

Rµii ∧ µi ∈ ±{0, 1}`m ∀i ∧ 2`e−1 < ε < 2`e

]
.

Note that this proof only ensures that one knows a valid signature with respect to Z or −Z.
While this is a technicality that arises for all known efficient zero-knowledge proofs of discrete
logarithms in RSA groups, it is not a problem in our setting. We refer to the literature for
a profound discussion, e.g., [CKY09, DF02]. We note that this problem could be avoided by
alternatively using the signed quadratic residues instead of QRn [HK09].

The required interval checks can be realized for free, if in the description of the signature
scheme the domain of e and the message space are slightly decreased. Instead of choosing e from
{0, 1}`e , we can choose it from [2`e−1 − 2`

′
e + 1, 2`e−1 + 2`

′
e − 1], where `′e < `e − κc − 3 and κc

is a security parameter controlling the knowledge error of the protocol. Similarly, all messages
mi must be from ±{0, 1}`m−κc−2, cf. [CG08].

UProve. Here we describe the signature scheme for blocks of L messages upon which U-Prove
is based [Paq13]. This is a modified version of the blind signature scheme by Brands [Bra93].

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 19

User[spk, (mi)
L
i=1] Signer[spk, ssk, (mi)

L
i=1]

t = g0
∏L
i=1 g

mi
i t = g0

∏L
i=1 g

mi
i

s←$ Z∗q w ←$ Zq
b1 ←$ Zq a = gw

b2 ←$ Zq b = tw

h = ts z = ty0

t1 = gb10 g
b2

t2 = hb2

(a, b, z)�
z′ = zs

a′ = t1a

b′ = (z′)b1t2b
s

c′ = H(h, z′, a′, b′) ∈ Zq
c = c′ + b1 mod q

c -
r = cy0 + w mod q

r�
r′ = r + b2 mod q
Output sig = (s, h, z′, c′, r′)

Fig. 4: Issuance of a signature on messages m1, . . . ,mL.

So far no formal security proof of the following scheme is known, and Baldimtsi and Lysyan-
skaya have shown that for the unmodified Brands blind signature scheme [Bra93] underlying
this construction all known approaches for proving security in the random oracle model will
fail under essentially any assumption [BL13b]. However, it is easy to see that for the following
scheme the discrete logarithm assumption is necessary: if an adversary could compute discrete
logarithms, he could find different (mi)

L
i=1 6= (m′i)

L
i=1 mapping to the same t value in the pro-

tocol, and therefore a signature for (mi)
L
i=1 would also be a valid signature for (m′i)

L
i=1.

Key generation. On input of security parameter κ the algorithm behaves as follows:

• It first computes κp for security level κ, and
• then chooses a prime p of length κp and a prime q such that q|p− 1.
• The algorithm picks a random generator g of the unique subgroup of order q in Z∗p, and
• then chooses random values yi ∈R Zq and sets gi = gyi for i = 0, . . . , L.

The algorithm outputs public key spk = (g, p, q, g0, g1, . . . , gL) and secret key ssk = y0.
Signing. To obtain a signature on a tuple (m1, . . . ,mL) ∈ ZLq of messages, the user runs the

protocol shown in Figure 4 with the signer.
Verification. Given messagesm1, . . . ,mL and a signature (s, h, z′, c′, r′), algorithm SignVf checks

whether the following two equations are satisfied:

h
?
= (g0

L∏
i=1

gmii)s

c′
?
= H(h, z′, gr

′
g−c

′

0 , hr
′
(z′)−c

′
)

Informal comparison of CL- and UProve-signatures. Note that the UProve-signature
scheme works substantially different than CL-signatures. In the CL-scheme, the signer learns
the signature he sends to the user. However, the user is able to re-randomize the signature,
and then prove possession of such a re-randomization. In this way, the values revealed to the
verifier are statistically independent of the actual signature obtained from the signer, and thus
presentations become unlinkable from signing sessions, and also multiple presentations of the
same signature cannot be linked to each other.

20 2. Preliminaries

For UProve-signatures, the user is not able to perform such a re-randomization. However,
the signer does not learn the actual signature given to the user. In this way the user can reveal
the signature itself as a prove of possession of a valid signature, without presentation and signing
sessions becoming linkable. On the downside, any two presentations of the same signature are
trivially linkable.

For a formal discussion of the resulting privacy properties we refer to § 8.2 and § 8.3, respec-
tively.

Chapter 3

Privacy ABC Systems
A privacy-enhancing attribute-based credential (PABC) system for an attribute space AS ⊆
±{0, 1}` is a set of algorithms SPGen, UKGen, IKGen, Present, Verify, ITGen, ITVf, and Revoke
and a protocol 〈U .Issue, I.Issue〉. Parties are grouped into issuers, users, and verifiers. The pub-
licly available system parameters are generated using SPGen by a trusted party (this algorithm
might be implemented using multiparty techniques in practice). There are multiple issuers, each
of which can issue and revoke credentials that certify a list of attribute values under his issuer
public key. Users hold secret keys that can be used to derive pseudonyms that are unique for
a given scope string, but are unlinkable across scopes. Using Present, users can create non-
interactive presentation tokens from their credentials in which they can reveal any subset of
attributes from any subset of their credentials, or prove that certain attribute values are equal
without revealing them. Presentation tokens can be publicly verified using Verify, on input the
token and the public keys of the issuers of the contained credentials. To obtain a credential,
a user generates an issuance token defining the attribute values of the credential to be issued
using ITGen. Once the issuer has received an issuance token (and verified it using ITVf), the user
and the issuer run 〈U .Issue, I.Issue〉, at the end of which the user obtains a credential. Issuance
can be combined with the presentation of existing credentials to obtain a partially blind form
of issuance, where some of the attribute values are known to the issuer, others are hidden but
proved to be equal to attributes in credentials the user already owns, and even others are chosen
by the user and unknown to the issuer. Hence, issuance tokens can be seen as an extension of
presentation tokens. Credentials can optionally be bound to a user’s secret key, meaning that
knowledge of this key is required to prove possession of the credential. Now, if a pseudonym or
multiple key-bound credentials are used in a presentation token, then all credentials and the
pseudonym must be bound to the same key. Finally, an issuer can revoke a credential using
the Revoke algorithm. This algorithm outputs some public revocation information RI that is
published and should be used as input to the verification algorithm of presentation and issuance
tokens.

We assume that issuers and users agree on the various parameters for the issuance token
including a revocation handle rh and the attributes of the new credential (upon which the user
has generated the issuance token pit) in a step preceding issuance, and that issuers verify the
validity of these tokens before engaging in this protocol. There are no requirements on how
revocation handles are chosen. However, in practice the handle should be different for each
credential an issuer issues and we suggest it be chosen randomly from AS.

3.1 Syntax

Before formalizing the security properties, we introduce the syntax of PABCs.

System parameter generation. The system parameters of a PABC-system are generated as
spar ←$ SPGen(1κ). For simplicity we assume that the system parameters in particular contain
an integer L specifying the maximum number of attributes that can be certifies in one credential.

These parameters are input to all algorithms presented in the following. However, for nota-
tional convenience, we will sometimes not make this explicit.

User key generation. Each user generates a secret key as usk←$ UKGen(spar).

Issuer key generation. Each issuer generates a public/private issuer key pair and some initial
revocation information as (ipk, isk,RI)←$ IKGen(spar).

21

22 3. Privacy ABC Systems

Presentation. A user generates a pseudonym nym and presentation token pt as

(nym, pt)←$ Present
(

usk, scope,
(
ipki,RIi, credi, (ai,j)

ni
j=1, Ri

)k
i=1
, E,M

)
, where

• usk is the user’s secret key, which can be ε if scope = ε and none of the credentials (credi)
k
i=1

is bound to a user secret key;

• scope is the scope of the generated pseudonym nym, where scope = ε if no pseudonym is to
be generated (in which case nym = ε);

• (credi)
k
i=1 are k credentials owned by the user that are involved in this presentation;

• ipki and RIi are the public key and current revocation information of the issuer of credi;

• (ai,j)
ni
j=1 is the list of attribute values certified in credi;

• Ri ⊆ {1, . . . , ni} is the set of attribute indices for which the value is revealed;

• E is an equivalence relation on {(i, j) : 1 ≤ i ≤ k ∧ 1 ≤ j ≤ ni}, where ((i, j), (i′, j′)) ∈ E
means that the presentation token will prove that ai,j = ai′,j′ without revealing the actual
attribute values. That is, E enables one to prove equality predicates;

• M ∈ {0, 1}∗ is a message to which the presentation token is to be bound. In practical
applications this might, e.g., be a nonce chosen by the verifier to prevent replay attacks,
where a verifier uses a valid presentation token to impersonate a user towards another
verifier.

If k = 0 and scope 6= ε, only a pseudonym nym is generated while pt = ε.

Presentation verification. A verifier can check the validity of a pseudonym nym and a
presentation token pt by executing

accept/reject←Verify
(

nym, pt, scope,
(
ipki,RIi, (ai,j)j∈Ri

)k
i=1
, E,M

)
,

where the inputs are as for presentation. For notational convenience, we assume here and in the
following, that a term like (ai,j)j∈Ri implicitly also describes the set Ri.

Issuance token generation. Before issuing a credential, a user needs to create an issuance
token that defines the attributes of the credentials to be issued, where (some of) the attributes
and the secret key can be hidden from the issuer and can be blindly “carried over” from cre-
dentials that the user already possesses (so that the issuer is guaranteed that hidden attributes
were vouched for by another issuer). Similarly to a presentation token, an issuance token is
generated as

(nym, pit, sit)←$ ITGen
(

usk, scope, rh,
(
ipki,RIi, credi, (ai,j)

ni
j=1, Ri

)k+1

i=1
, E,M

)
,

where most of the inputs and outputs are as before, but

• pit and sit are the public and secret parts of the issuance token,

• credk+1 = ε is a placeholder for the new credential to be issued,

• rh is the revocation handle for credk+1 (maybe chosen by the issuer before),

• ipkk+1 and RIk+1 are the public key and current revocation information of the issuer of the
new credential,

• (ak+1,j)j∈Rk+1
are the attributes of credk+1 that are revealed to the issuer,

• (ak+1,j)j 6∈Rk+1
are the attributes of credk+1 that remain hidden, and

• ((k+1, j), (i′, j′)) ∈ E means that the jth attribute of the new credential will have the same
value as the j′th attribute of the i′th credential.

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 23

Issuance token verification. The issuer verifies an issuance token as follows:

accept/reject←$ ITVf
(

nym, pit, scope, rh,
(
ipki,RIi, (ai,j)j∈Ri

)k+1

i=1
, E,M

)
where for j = 1, . . . , k all inputs and outputs are as for Verify, but for k + 1 they are for the
new credential to be issued based on pit.

Issuance. Issuance of credentials is an interactive protocol:

(cred,RI′)←$ 〈(U .Issue(sit); I.Issue(isk, pit,RI)〉 ,

executing between a user and an issuer, where the inputs are defined as before, and pit has
been verified by the issuer before. The user obtains a credential as an output, while the issuer
receives an updated revocation information RI′.

Revocation. To revoke a credential with revocation handle rh, the issuer runs:

RI′ ←$ Revoke(isk,RI, rh)

to generate the new revocation information RI′ based on the issuer’s secret key, the current
revocation information, and the revocation handle to be revoked.

3.2 Oracles for Our Security Definitions

The definitions of the security properties of a PABC system require a number of oracles modeling
the honest parties. Since some of the oracles are used in multiple definitions, we present them all
in one place. The oracles are initialized with a set of honestly generated keys of nI honest issuers
(ipk∗1, isk∗1,RI∗1), . . . , (ipk∗nI

, isk∗nI
,RI∗nI

) and nU users with keys usk∗1, . . . , usk∗nU
, respectively. Let

IK∗ = {ipk∗1, . . . , ipk∗nI
}. The oracles also maintain initially empty sets C, HP, IT , IRH, RRH,

RI. Here, C contains all credentials that honest users have obtained as instructed by the adver-
sary, while HP contains all presentation tokens generated by honest users. All public issuance
tokens that the adversary used in successful issuance protocols with honest issuers are stored in
IT . The set IRH contains all issued revocation handles, i.e., the revocation handles of creden-
tials issued by honest issuers, while RRH contains the revoked handles per issuer. Finally, RI
contains the history of the valid revocation information of honest issuers at any point in time.
Time is kept per issuer I through a counter epoch∗I that is initially zero and increased at each
issuance and revocation by issuer I.

Honest Issuer Oracle Oissuer. The issuer oracle allows the adversary to obtain and revoke
credentials from honest issuers. It provides the following interfaces:

• On input (issue,nym, pit, scope, rh, (ipki,RIi, (ai,j)j∈Ri)
k+1
i=1 , E,M) the oracle checks that

ITVf accepts the issuance token pit and that the revocation information of all honest is-
suers is authentic, i.e., that a tuple (ipki,RIi, ·) ∈ RI exists for all honest issuers ipki.
Further, it verifies that ipkk+1 is the public key of an honest issuer ipk∗I with corresponding
secret key isk∗I and current revocation information RI∗I = RIk+1. If one of the checks fails,
the oracle outputs ⊥, otherwise it proceeds as follows.
The oracle runs I.Issue(iskk+1, pit,RI∗I) in interaction with A until the protocol outputs
RIk+1. It returns RIk+1 to A, sets RI∗I ← RIk+1, increases epoch∗I , adds (ipk∗I ,RI′, epoch∗I) to
RI. It also adds

(
nym, pit, scope, (ipki,RIi, (ai,j)j∈Ri)

k+1
i=1 , E,M

)
to IT and adds (ipk∗I , rh)

to the set IRH.
• On input (revoke, I, rh) the oracle checks that the revocation handle rh has been the input

of a successful issuance protocol with an honest issuer with key ipk∗I , or returns ⊥ other-
wise. The oracle runs RI∗I ←$ Revoke(isk∗I ,RI∗I , rh), increases epoch∗I , adds (ipk∗I , rh, epoch∗I)
to RRH, adds (ipk∗I ,RI′, epoch∗I) to RI, and returns RI∗I to the adversary.

24 3. Privacy ABC Systems

Honest User Oracle Ouser. The user oracle gives the adversary access to honest users, which
he can trigger to obtain credentials on inputs of his choice and request presentation tokens
on inputs of his choice. The adversary does not get the actual credentials, but is only given a
unique credential identifier cid by which he can refer to the credential. It provides the following
interfaces:

• On input (present, U, scope, (ipki,RIi, cidi, Ri)
k
i=1, E,M) the oracle checks if U ∈ {1, . . . ,

nU} and if, for all i = 1, . . . , k, a tuple (U, cidi, credi, (ai,j)
ni
j=1) ∈ C exists. Further, for

all credentials from honest issuers the oracle verifies if the provided revocation informa-
tion is authentic, i.e., if for all honest issuer public keys ipki = ipk∗I there exists a tuple
(ipki,RIi) ∈ RI. If any of the checks fails, the oracle returns ⊥, otherwise it computes
(nym, pt) ←$ Present

(
usk∗U , scope, (ipki,RIi, credi, (ai,j)

ni
j=1, Ri)

k
i=1, E,M

)
and adds the tuple(

nym, pt, scope, (ipki,RIi, (ai,j)j∈Ri)
k
i=1, E,M

)
to HP. Finally, it returns (nym, pt) to A.

• On input (obtain, U, scope, rh, (ipki,RIi, cidi, Ri)
k+1
i=1 , E,M, (ak+1,j)

nk+1

j=1) the oracle checks
that U ∈ {1, . . . , nU} and that, for all i = 1, . . . , k, a tuple (U, cidi, credi, (ai,j)

ni
j=1) ∈ C

exists. It further checks that the revocation information of honest issuers is authentic,
i.e., that a tuple (ipki,RIi, ·) ∈ RI exists for all honest issuers ipki ∈ IK∗. The oracle
computes the issuance token (nym, pit, sit)←$ ITGen

(
usk∗U , scope, rh, (ipki,RIi, credi, (ai,j)

ni
j=1

, Ri)
k+1
i=1 , E,M

)
. If ipkk+1 6∈ IK∗, the oracle sends (nym, pit) to the adversary and runs

U .Issue(sit) in interaction with the adversary until it returns a credential cred and stores
(U, cidk+1, cred, (ak+1,j)

nk+1

j=1) in C. If ipkk+1 = ipk∗I ∈ IK∗, the oracle runs U .Issue(sit) inter-
nally against I.Issue(isk∗I , pit) until they output a credential cred and revocation information
RI′, respectively. The oracle adds (U, cidk+1, cred, (ak+1,j)

nk+1

j=1) in C and adds (ipk∗I , rh) to
IRH. It further increases epoch∗I , sets RI∗I ← RI′, and adds (ipk∗I ,RI∗I , epoch∗I) to RI. Fi-
nally, the oracle chooses a fresh and unique credential identifier cidk+1 for the new credential
and outputs it to A (note that A’s choice of cidk+1 is ignored).

3.3 Security Definitions for PABC-Systems

In the following we now describe the security properties that need to be satisfied by a PABC-
system. We refer to the introduction for an informal discussion.

3.3.1 Correctness

We omit a formal definition here, as the correctness requirements are what one would expect, i.e.,
whenever all parties are honest and run all algorithms correctly, none of the algorithms aborts
or outputs reject. That is, (i) if all inputs are correct, Issue always outputs a valid credential,
(ii) holding valid credentials satisfying the specified relations allows a user to generate valid
presentation- and issuance tokens, and (iii) issuers are able to revoke any attribute of their
choice.

3.3.2 Pseudonym Collision-Resistance

We require that, given fresh system parameters spar ←$ SPGen(1κ) as input, no PPT ad-
versary A can come up with two user secret keys usk0 6= usk1 and a scope scope such that
NymGen(spar, usk0, scope) = NymGen(spar, usk1, scope).

We further require that a pseudonym is a deterministic function of the system parame-
ters, user secret and the scope, i.e., that there exists a function NymGen such that for all

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 25

Experiment ForgeA(1κ, nI, nU):
spar←$ SPGen(1κ)
(ipk∗I , isk∗I ,RI∗I)←$ IKGen(spar) for I = 1, . . . , nI

usk∗U ←$ UKGen(spar) for U = 1, . . . , nU

FT ←$ AO
issuer,Ouser

(spar, (ipk∗I ,RI∗I)
nI
I=1, nU)

Return 1 if and only if:
FT , IT , HP, IRH, RRH, and RI are not consistent.

Fig. 5: ForgeA(1κ, nI, nU)

usk, scope, rh, C, C ′, E,E′ and M,M′

Pr[nym = nymi = nymp :spar←$ SPGen(1κ),nym← NymGen(spar, usk, scope),

(nymi, pit, sit)←$ ITGen(usk, scope, rh, C ′, E′,M′),

(nymp, pt)←$ Present(usk, scope, C,E,M)] = 1

3.3.3 Unforgeability

We define unforgeability as a game between the adversary and the oracles from § 3.2, from which
he can request credentials from honest issuers, or trigger honest users to receive credentials or
make presentation tokens. After having interacted with all these oracles, the adversary outputs
a number of presentation tokens and pseudonyms, i.e., a set of tuples (nym, pt, scope, (ipki,RIi,
(ai,j)j∈Ri)

k
i=1), E,M) as defined in the syntax of the Verify algorithm. The adversary wins the

game if at least one of the presentation tokens is a forgery or if at least one of the issuance
tokens submitted to the honest issuer oracle was a forgery.

A forgery is informally defined as an issuance or presentation token for which the corre-
sponding credentials were not issued to the adversary or are not supposed to be valid w.r.t. the
revocation information stated in the token. Now, as the issuer does not see all attributes nor
the user secret key of issued credentials, it is often not clear whether or not a given issued
credential is one of the credentials corresponding to a token. However, if we assume that we
knew all hidden values for each credential issued (including the user secret key), then we can
efficiently test whether or not a given issuance or presentation token is a forgery. Thus, if there
is an assignment for all the hidden values of the issued credentials such that all the issuance
and presentation tokens presented by the adversary correspond to valid credentials, then there
is no forgery among the tokens. Or, in other words, if there is no such assignment, then the
adversary has produced a forgery and wins the game. Regarding the validity of credentials,
the adversary also wins if he outputs a valid token for a credential that was already revoked.
Thereby, the revocation information must not necessarily be the latest information an honest
issuer has published, but can also be a previous version.

Definition 3.1 (Unforgeability). We say that a PABC-scheme satisfies unforgeability, if for
every PPT adversary A and all nU, nI ∈ N there exists a negligible function ν such that

Pr[ForgeA = 1] ≤ ν(κ) ,

where the experiment is described in Figure 5, and the oracles Oissuer and Ouser are as defined
in § 3.2.

We now define what consistency of the sets FT , IT , HP, IRH, RRH, and RI means.
First, the set FT must only contain “fresh” and valid presentation tokens, meaning that for
each tuple (nym, pt, scope, (ipki,RIi, (ai,j)j∈Ri)

k
i=1), E,M) in FT must pass Verify and that for all

i = 1, . . . , k where ipki ∈ IK∗ there exists a tuple (ipki,RIi, ·) ∈ RI. If any tuple in FT does not
satisfy these conditions, then the adversary loses the game. Let USK ⊂ {0, 1}∗ be a hypothetical

26 3. Privacy ABC Systems

set containing the user secret keys that the adversary may have used throughout the game, and
let CRED be a hypothetical set containing the credentials from honest issuers that the adversary
may have collected during the game. In the latter set, we write (usk, ipk∗I , rh, (α1, . . . , αn)) ∈
CRED if the adversary obtained a credential from issuer ipk∗I with revocation handle rh and
attribute values (α1, . . . , αn) bound to user secret usk. Now, we consider the sets FT , IT , HP,
IRH, RRH and RI to be consistent if there exist sets USK and CRED such that the following
conditions hold:

1. Each credential is the result of a successful issuance. For all revocation handles rh and honest
issuer public keys ipk∗I , the number of tuples (·, ipk∗I , rh, ·) ∈ CRED is at most the number
of tuples (ipk∗I , rh) ∈ IRH.

2. All presentation or issuance tokens correspond to legitimately obtained unrevoked credentials.
For every tuple

(
nym, pt, scope, (ipki,RIi, epochi, (ai,j)j∈Ri)

k
i=1, E,M

)
∈ FT ∪IT there exists

a usk ∈ USK and a set of credentials {credi = (uski, ipki, rhi, (αi,j)
ni
j=1) : ipki ∈ IK∗} ⊆

CRED such that:
(a) uski ∈ {usk, ε} (all key-bound credentials are bound to the same key),
(b) nym = scope = ε or nym = NymGen(spar, usk, scope) (if there is a pseudonym, then it is

the pseudonym for usk and scope),
(c) αi,j = ai,j for all j ∈ Ri (the revealed attribute values are correct),
(d) αi,j = αi′,j′ for ((i, j), (i′, j′)) ∈ E with ipki′ ∈ IK∗ (the attributes satisfy the equality

relations to other credentials from honest issuers), and
(e) there exists a tuple (ipki,RIi, epochi) ∈ RI such that there exists no tuple (ipki, rhi,

epoch′i) ∈ RRH with epoch′i ≤ epochi (the credentials were not revoked in the epoch
where they were presented).

Thus, the adversary wins the game, if there do not exist sets USK and CRED that satisfy
all the information captured in FT , IT , HP, IRH, RRH, and RI.

We had to make a number of design decisions for our definitions, which we want to explain
and motivate in the following. First, we do not require strong unforgeability, i.e., we do not
consider a token a forgery if it contains the identical elements as a pt or pit generated by an
honest user. However, we believe that this is not a restriction, as tokens are bound to messages
M that typically uniquely identify the current session, and thus an adversary will not be able
to benefit from a weak forgery in practice. Next, we do not require that adversarially generated
issuance tokens are satisfied until the issuance protocol finishes. That is, we consider forgery
of issuance tokens to be a problem only if they are subsequently used in an successful issuance
protocol. Requiring the stronger property that issuance tokens are unforgeable by themselves
is possible, but would make our definition considerably more complicated (e.g., issuance tokens
without successful issuance would have to be entered in the list of P without the specification
of the to-be-issued credential). However, this relaxation does not pose a problem in practice,
as an invalid issuance token without subsequent successful issuance does not give an adversary
any meaningful power. Third, for blindly issued attributes we only require that they satisfy the
relation defined by E, but do not forbid, e.g., that an adversary runs the issuance protocol twice
with the same issuance token, but with the resulting credentials containing different values for
the blinded attributes as long as they satisfy E. Again, this is not a real-world problem, as the
adversary could otherwise just run multiple sessions for different issuance tokens, as the issuer
will, by definition of blind attributes, not obtain any guarantees on those attributes apart from
what E specifies. Finally, we do not consider it a problem if tokens for earlier epochs than the
one underlying a credential are generated. We believe that this makes sense in the presence
of off-line verifiers who cannot update their revocation information continuously. However, our
definition and generic construction could easily be modified to forbid the generation of such
tokens.

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 27

3.3.4 Simulatable Privacy

This section contains definitions of the two versions of privacy of a PABC scheme: Privacy and
Weak Privacy, the difference between the two is discussed in more detail at the end of this
section.

Privacy

We define privacy by requiring that all issuance protocols and presentation tokens performed
by honest users can be simulated using only the public information that is explicitly revealed
during the issuance or presentation. That is, the simulator is not given the actual credentials,
values of hidden attributes, or even the index of the user that is supposed to perform the pre-
sentation or issuance, but must provide a view to the adversary that is indistinguishable from
a real user. Formalizing this is not straightforward, however. It does not suffice to require two
separate simulators that work for issuance and presentation, respectively, because pseudonyms
and revocation introduce explicit dependencies across different issuance and presentation queries
that must also be reflected in the simulation. Moreover, the simulator must not generate pre-
sentation tokens that could not have been generated in the real world, e.g., because the user
does not have the required credentials. But as the simulator does not see any user indices or
hidden attribute values, it cannot know which queries can be satisfied.

We therefore define a game where an adversary A either runs in a real world, where he has
access to an honest user oracle performing the actual protocols, or runs in a simulated world,
where A’s oracle queries are first filtered by a filter F and then responded to by a stateful
simulator S. The filter’s role is to sanitize the queries from non-public information such as user
indices, credential identifiers, etc., and to intercept queries that could not be satisfied in the
real world. Note that the filter thereby enforces that the adversary can only obtain presentation
tokens for valid inputs. Thus, the same must be guaranteed by the credential system as well,
otherwise the adversary could easily distinguish between both worlds.

Definition 3.2 (Privacy). A PABC system is private, if there exist two PPT algorithms S1
and S2 such that no PPT adversary A has a non-negligible chance of winning the game described
in Figure 6.

Here, Ouser(spar) behaves as described in § 3.2, while F maintains initially empty lists C
and P , a counter ctr = 0, and state information stS = τ , and responds to queries as follows:

• On input (present, U, scope, (ipki,RIi, cidi, Ri)
k
i=1, E,M), the filter checks if U ∈ {1, . . . , nU}

and if, for all i = 1, . . . , k, a tuple (U, cidi, ipki, (ai,j)
ni
j=1, revi) ∈ C exists. Here, revi is the

code of an algorithm that on input RIi outputs a bit indicating whether the credential is to be
considered revoked. Further, for all credentials the filter checks if revi(RIi) = 0 ∀i = 1, . . . , k
and that ai,j = ai′,j′ for all ((i, j), (i′, j′)) ∈ E. If any of the checks fails, the filter returns ⊥.
If scope 6= ε and (U, scope, p) 6∈ P then F sets ctr← ctr + 1, p← ctr, and adds (U, scope, p)
to P . It then executes (stS,nym, pt) ←$ S2(stS, present, scope, p, (ipki, (ai,j)j∈Ri)

k
i=1, E,M).

Finally, it returns (nym, pt) to A.

• On input (obtain, U, scope, rh, (ipki,RIi, cidi, Ri)
k+1
i=1 , E,M, (ak+1,j)

nk+1

j=1), the filter checks if
U ∈ {1, . . . , nU} and if, for all i = 1, . . . , k, a tuple (U, cidi, ipki, (ai,j)

ni
j=1, revi) ∈ C exists.

Further, for all credentials the filter checks if revi(RIi) = 0 ∀i = 1, . . . , k and that ai,j = ai′,j′

for all ((i, j), (i′, j′)) ∈ E. If any of the checks fails, the filter returns ⊥. The filter then looks
up the same value p as in present. It then executes (stS,nym, pit)←$ S2(stS, obtain, scope, p,
(ipki, (ai,j)j∈Ri)

k+1
i=1 , E,M, rh) and returns (nym, pit) to A. For the subsequent flows in the

issuance protocol, F answers each incoming message Min from A by running (stS,Mout) ←$
S2(stS,Min). At the last flow, S2 returns a tuple (stS,Mout, cid, rev). If cid 6= ⊥, F adds a
tuple (U, cid, ipkk+1, (ak+1,j)

nk+1

j=1 , rev) to C and returns Mout to A.

28 3. Privacy ABC Systems

Experiment PrivacyA(1κ, nU) and WeakPrivacyA(1κ, nU):
b←$ {0, 1}

If b = 0: Else:
spar←$ SPGen(1κ) (spar, τ)←$ S1(1κ)
usk∗U ←$ UKGen(spar) for U = 1, . . . , nU

USK∗ = {usk∗U}
nU
U=1

b′ ←$ AO
user(USK∗,·)(spar, nU) b′ ←$ AF(nU,·)|S2(τ)(spar, nU)

Return 1 if and only if
b = b′.

Fig. 6: PrivacyA(1κ, nU) or WeakPrivacyA(1κ, nU) depending on the definition of F

We require that for every PPT adversary A and every nU ∈ N we have that for some negligible
function ν it holds that:

Pr[PrivacyA(1κ, nU) = 1] ≤ 1/2 + ν(κ) .

Weak Privacy

The definition above ensures a very strong notion of privacy that not all instantiations of PABC
schemes are able to satisfy. Namely, some schemes do not provide unlinkability across multiple
presentation tokens pt that were derived from the same credential. For instance, this is the
case for Microsoft’s UProve, where an arbitrary number of presentations cannot be linked to a
specific issuance session, but any two presentations of the same credential can be linked to each
other.

In the following we therefore introduce a relaxed notion of privacy, called weak privacy. In
this definition we give the simulator some more information to be able to generate “linkable”
presentation tokens if the adversary requests multiple presentations tokens for some credential.
Formally, we do this by giving S2 “anonymized” pointers to credential identifiers pcid as input.
Thus, the simulator is aware if the same credential (signature) is used in multiple presentation
sessions and can prepare the simulated token accordingly. Due to the “anonymization” of the
credential identifier pcid, the simulator still does not learn the connection between an issued
credential (or rather its cid) and a presentation token, thus untraceability (meaning presentation
sessions cannot be linked to the actual issuance of the credential) still holds.

The only essential difference between the previous definition of Privacy and the below defi-
nition of Weak Privacy is that the filter maintains an additional list Lcid of credential identifiers
and by using this list it can supply S2 with the credential identifier pcid. By pcid S2 can simulate
the linkability in the simulated scenario if this is present in the real scenario.

Definition 3.3 (Weak Privacy). A PABC system is weak private, if there exist two PPT
algorithms S1 and S2 such that no PPT adversary A has a non-negligible chance of winning the
game described in Figure 6.

Here, Ouser(spar) behaves as described in § 3.2, while F maintains initially empty lists C,
P , L, two counter ctrnym = 0 and ctrcid = 0, and state information stS = τ , and responds to
queries as follows:

• On input (present, U, scope, (ipki,RIi, cidi, Ri)
k
i=1, E,M), the filter checks if U ∈ {1, . . . , nU}

and if, for all i = 1, . . . , k, a tuple (U, cidi, ipki, (ai,j)
ni
j=1, revi) ∈ C exists. Here, revi is the

code of an algorithm that on input RIi outputs a bit indicating whether the credential is to be
considered revoked. Further, for all credentials the filter checks if revi(RIi) = 0 ∀i = 1, . . . , k
and that ai,j = ai′,j′ for all ((i, j), (i′, j′)) ∈ E. If any of the checks fails, the filter returns
⊥. If scope 6= ε and (U, scope, p) 6∈ P then F sets ctrnym ← ctrnym + 1, p ← ctrnym, and
adds (U, scope, p) to P . For each cidi with i = 1, . . . , k, F checks if a tuple (cidi, pcidi) in L

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 29

exist. If not, it sets ctrcid ← ctrcid +1, pcid ← ctrcid, and adds a tuple (cid, pcid) to L. It then
executes (stS,nym, pt) ←$ S2(stS, present, scope, p, (ipki, (ai,j)j∈Ri , pcidi)

k
i=1, E,M). Finally,

it returns (nym, pt) to A.

• On input (obtain, U, scope, rh, (ipki,RIi, cidi, Ri)
k+1
i=1 , E,M, (ak+1,j)

nk+1

j=1), the filter checks if
U ∈ {1, . . . , nU} and if, for all i = 1, . . . , k, a tuple (U, cidi, ipki, (ai,j)

ni
j=1, revi) ∈ C exists.

Further, for all credentials the filter checks if revi(RIi) = 0 ∀i = 1, . . . , k and that ai,j = ai′,j′

for all ((i, j), (i′, j′)) ∈ E. If any of the checks fails, the filter returns ⊥. The filter then
looks up the same values p and {pcidi}ki=1 as in present. It then executes (stS,nym, pit) ←$
S2(stS, obtain, scope, p, (ipki, (ai,j)j∈Ri , pcidi)

k+1
i=1 , E,M, rh) and returns (nym, pit) to A. For

the subsequent flows in the issuance protocol, F answers each incoming message Min from A
by running (stS,Mout)←$ S2(stS,Min). At the last flow, S2 returns a tuple (stS,Mout, cid, rev).
If cid 6= ⊥, F adds a tuple (U, cid, ipkk+1, (ak+1,j)

nk+1

j=1 , rev) to C and returns Mout to A.

We require that for every PPT adversary A and every nU ∈ N we have that for some
negligible function ν it holds that:

Pr[WeakPrivacyA(1κ, nU) = 1] ≤ 1/2 + ν(κ) .

Comparison of Privacy and Weak Privacy

The following lemma sums up the relation between the two privacy definitions stated above,
showing that privacy is a strictly stronger requirement than weak privacy. However, weak pri-
vacy is an interesting property, as for specific applications it still provides sufficiently strong
guarantees, but, on the other hand, might be achievable for less computational costs than pri-
vacy.

Before we state the lemma we note that the only difference between the two experiments for
the definitions is the definition of the filter F . Next we note that the only difference between
the two filters is that in Definition 3.3, the definition for weak privacy, the filter keeps the list
L, which is used to give the simulator the same identifier, the values pcid, if a credential is to be
presented multiple times. This gives the simulator the ability to simulate a scheme where two
presentation of the same credential can be linked together.

Lemma 3.4. Definition 3.2 implies Definition 3.3, but not vice versa. More formally, every
private PABC scheme is also weakly private, but there exist weakly private PABC schemes that
are not (fully) private.

Proof. To see the implication, let S be the simulator of a (fully) private PABC scheme. Then
S′ defined as follows is a valid simulator for weak privacy: it forwards all inputs an internal
instance of S after removing pcid, and outputs whatever S outputs. It is easy to see as after
removing pcid the experiments of Definitions 3.2 and 3.3 coincide, and thus any adversary
breaking Definition 3.3 would directly break Definition 3.2 as well.

To see that the other direction does not hold we refer to our generic construction (§ 5)
and the instantiation based on U-Prove (§ 7.4). By Theorem 6.5, the resulting PABC scheme is
weakly private. However, it is not private, as the presentation tokens in this scheme reveal parts
of the credential without re-randomizing them, and thus it is trivial to link presentation tokens
of the same credential. ut

Chapter 4

Building Blocks

In this section we define several building blocks such as signature or pseudonym schemes, the
algorithms and protocols they execute, and the formal security requirements they need to satisfy.
Compared to PABC-systems, most of the security requirements presented in the following are
relatively easy to formalize and also to prove for a specific instantiation. However, in § 5 we will
show that these properties are actually sufficient to obtain PABC-systems by giving a generic
construction for PABC-systems from these building blocks.

4.1 Global Setup

Global system parameters allow one to specify shared system parameters that are to be used
by all the other building blocks.

Global System Parameter Generation. The global system parameters are generated as

sparg = (1κ, `, `′, sparc, ck, L, spar′g)←$ SPGeng(1
κ) ,

where:

• ` is an integer such that the message space of the signature scheme is a subset of ±{0, 1}`,
but the revocation and pseudonym systems support inputs from at least ±{0, 1}`,
• `′ ≥ ` is an integer,

• sparc ←$ SPGenc(1
κ, `′),

• ck←$ ComKGen(sparc) a public master commitment key,

• L specifies the maximum number of attributes that can signed at once, and

• spar′g potentially specifies further global parameters.

4.2 Commitment Schemes

In the following we introduce the syntax we use for commitment schemes, as well as the security
properties such a scheme has to satisfy.

4.2.1 Syntax

Basically, the commitment schemes we use are an extension of the standard notion of commit-
ment schemes. Besides the usual algorithms and properties, we require the possibility to securely
prove knowledge of the content of a commitment.

System parameter generation. The commitment system parameters are generated as

sparc = (1κ, λ, spar′c)←$ SPGenc(1
κ, λ) ,

where:

• λ is the maximum bit length of messages that can be committed to, and

• spar′c potentially specifies further commitment parameters.

30

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 31

Commitment key generation. This algorithm computes a public commitment key as:

ck←$ ComKGen(sparc) .

Committing to messages. Given a message m, a commitment key ck and system parameters
sparc this algorithm is defined as:

(c, o)←$ Com(ck, sparc,m) ,

where c is the commitment to m, and o is the opening information to c.

Commitment opening verification. This algorithm verifies that the opening o of a com-
mitment c is correct for a message m:

accept/reject←$ ComOpenVf(ck, sparc, c,m, o) .

Commitment opening proof. This algorithm non-interactively proves knowledge of content
of a commitment:

π ←$ ComPf(ck, sparc, c, o,m) .

Commitment proof verification. This algorithm verifies a proof π for a commitment c:

accept/reject←$ ComProofVf(ck, sparc, c, π) .

For notational convenience, we will omit sparc and ck as inputs to the algorithms if they are
clear from the context.

4.2.2 Security Definitions for Commitment Schemes

We next recapitulate the standard security definitions of commitment schemes using the inter-
faces defined in § 4.2.1.

Correctness guarantees that honestly computed commitments for honest keys can be suc-
cessfully opened:

Definition 4.1 (Correctness). A commitment scheme is correct, if for every λ ∈ Z and
m ∈ {0, 1}λ we have that:

Pr[ComOpenVf(ck, sparc, c,m, o) = reject :

sparc ←$ SPGenc(1
κ, λ), ck←$ ComKGen(sparc), (c, o)←$ Com(ck, sparc,m)] = 0 .

The binding property guarantees that no efficient adversary can find valid openings of a
single commitment to two different messages:

Definition 4.2 (Computationally binding). A commitment scheme is called computation-
ally binding, if it is infeasible to open a commitment to two different messages. That is, for
every efficient algorithm A there exists a negligible function ν such that:

Pr[ComOpenVf(ck,m, c, o, sparc) = accept ∧ ComOpenVf(ck,m′, c, o′, sparc) = accept :

sparc ←$ SPGeng(1
κ, λ), ck←$ ComKGen(sparc), (c,m,m

′, o, o′)←$ A(ck, sparg)] ≤ ν(κ) .

The hiding property guarantees that a commitment does not leak any information about
the contained message:

Definition 4.3 (Statistically/computationally hiding). A commitment scheme is statis-
tically/computationally hiding, if for every m,m′ ∈ M the distributions of Com(ck,m, sparc)
and Com(ck,m′, sparc) are statistically/computationally indistinguishable.

32 4. Building Blocks

Additionally to these standard properties, we also require that knowledge of the content of
a commitment can be proved in a zero-knowledge way:

Definition 4.4 (Opening extractability). A commitment scheme is opening extractable, if
and only if (SPGenc,ComPf,ComProofVf) is a non-interactive ZK proof of knowledge for the
following relation R , cf. also § 2.2.1:

(c, (o,m)) ∈ R :⇔ ComOpenVf(c,m, o) = accept .

4.3 Privacy-Enhancing Attribute-Based Signatures

We next define the main building block: privacy-enhancing attribute-based signatures (PABS).

4.3.1 Syntax

We first define the parties and the protocols they execute. Informally, parties are split into issuers
signing attributes, users obtaining signatures, and verifiers checking whether users possess valid
signatures on certain attributes. After setting up some PABS-specific system parameters, each
issuer computes his signing/verification key pair, such that everybody can verify that keys are
well-formed. At issuance time, users can reveal certain attributes to the issuer, e.g., depending on
the issuer’s policy, and get the remaining attributes signed blindly. Having received a signature,
a user can verify its correctness. Presentation is then done in a non-interactive manner: users
compute signature presentation tokens, potentially revealing certain attributes, and verifiers
can check these tokens.

System Parameter Generation. The signature system parameters are generated as

spars = (sparg,AS, spar′s)←$ SPGens(sparg) ,

where the input are global system parameters, and

• AS ⊆ ±{0, 1}` is the attribute space, and
• spar′s potentially specifies further signature parameters.

The system parameters are input to any of the other algorithms of the scheme. However,
for notational convenience, we will sometimes not make this explicit.

Key Generation. An issuer generates a key pair (ipk, isk) ←$ IKGen(spars). We assume that
the issuer public key implicitly also defines a maximum L of attributes a signature may contain.

Key Verification. A public key ipk of an issuer can be verified for correctness with respect
to a security parameter 1κ as

accept/reject← KeyVf(ipk) .

Signature Issuance. Issuance of an attribute signature is an interactive protocol between a
user and a signature issuer:

(sig/⊥, ε)←$ 〈U .Sign(ipk, (cj , oj)j /∈R,
#„a) ; I.Sign(isk, (ai)i∈R, (cj , πj)j 6∈R)〉 ,

where:

• #„a = (a1, . . . , aL) are the attributes to be signed,
• R denotes indices of attributes that are revealed to the issuer (the other ones are unrevealed)
• cj is a verified commitment to aj , oj is the associated opening information, and πj is a

non-interactive proof of knowledge of the opening of cj . In particular, cj might be re-used
from a preceding signature presentation, allowing users to blindly carry over attributes into
new credentials.

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 33

At the end of the protocol the user either obtains a signature sig or ⊥ in case the issuance failed.

Signature Verification. The correctness of a signature can be verified using SigVf on input
a signature sig, attributes #„a and a issuer public key ipk:

accept/reject← SigVf(sig, #„a , ipk) .

Signature Presentation Token Generation. The user can compute a signature presentation
token spt that proves that he possesses a signature for a set of revealed attributes R and
committed attributes (cj , oj)j∈C where C ∩R = ∅. Furthermore, a signature presentation token
can be bound to a specific message M specifying, e.g., some context information or random
nonce to disable adversaries to re-use signature presentation tokens in subsequent sessions:

spt/⊥ ←$ SignTokenGen(ipk, sig, #„a ,R, (cj , oj)j∈C ,M) .

Signature Presentation Token Verification. The correctness of a signature presentation
token can be verified publicly as:

accept/reject←$ SignTokenVf(ipk, spt, (ai)i∈R, (cj)j∈C ,M) .

4.3.2 Security Definitions for PABS Schemes

We require that honest parties are always able to succeed in the previous algorithms. That is,
none of the above algorithms should output ⊥ or reject, whenever the inputs were computed
honestly and the parties followed the protocol specifications.

Definition 4.5 (Signature Completeness). A PABS-system is complete, if there exist neg-
ligible functions νi, i = 1, 2, 3, such that the following is satisfied for all #„a ∈ AS(κ)L, all
C,D,R ⊆ {1, . . . , L} with C ∩D = ∅ and all messages M:

Honestly computed keys are well-formed with overwhelming probability:

Pr[KeyVf(ipk, 1κ) = reject : sparg ←$ SPGeng(1
κ),

spars ←$ SPGens(sparg), (isk, ipk)←$ IKGen(spars)] ≤ ν1(κ)

If all parties are honest, the user obtains a valid signature with overwhelming probability:

Pr[sig = ⊥ ∨ SigVf(sig, #„a , ipk) = reject : spars ←$ SPGens(SPGeng(1
κ)),

(isk, ipk)←$ IKGen(spars), (cj , oj)←$ Com(aj) ∀j /∈ R,
(sig, ε)←$ 〈U .Sign(ipk, (cj , oj)j /∈R,

#„a); I.Sign(isk, (ai)i∈R, (cj)j /∈R)〉] ≤ ν2(κ)

For honest issuers, an honest user can produce valid signature presentation tokens with
overwhelming probability:

Pr[SignTokenVf(ipk, spt, (ai)i∈D, (cj)j∈C ,M) = reject :

sparg ←$ SPGeng(1
κ), spars ←$ SPGens(sparg), (isk, ipk)←$ IKGen(spars),

(cj , oj)←$ Com(aj) ∀j /∈ R, (c′j , o
′
j)←$ Com(aj) ∀j ∈ C

(sig, ε)←$ 〈U .Sign(ipk, (cj , oj)j /∈R,
#„a); I.Sign(isk, (ai)i∈R, (cj)j /∈R)〉,

spt←$ SignTokenGen(ipk, sig, #„a ,D, (c′j , o
′
j)j∈C ,M)] ≤ ν3(κ).

The following definition is similar to the standard unforgeability and gives the user access
to an issuance oracle Oissuer, from which he can obtain signatures on attributes of his choice.
To capture also the information the adversary can gain from acting as a verifier with honest

34 4. Building Blocks

users, we additionally grant A access to a user oracle Ouser. The adversary can ask the oracle to
get signatures for attributes of his choice from the issuer, for which A will only receive a handle
but not the signature itself. Subsequently the adversary can request presentation proofs for
those unrevealed signatures where the oracle executes the part of the honest user. Finally, the
adversary wins the unforgeability game if he manages to output a valid signature for attributes
he has never sent to the issuer oracle.

Note that we also consider signatures on attributes sent to Ouser as forgeries, and thus our
notion also captures the property that a verifier should not able to impersonate the user after
having received a presentation proof. On the other hand, we do not require strong unforgeability,
i.e., given a signature for attributes #„a an adversary may be allowed to derive a different signature
for the same attributes. On the contrary, our construction given in § 7.3 heavily relies on the
fact that a user can re-randomize signatures.

Definition 4.6 (Signature Unforgeability). A PABS-scheme is called unforgeable, if there
exists an efficient algorithm Es = (Es1,E

s
2), called signature extractor, that satisfies the following

properties:

• Es1 outputs parameters and trapdoors, such that the parameters are indistinguishable from
correctly computed system parameters:

{spars : spars ←$ SPGens(SPGeng(1
κ))} ∼ {spars : (spars, τs)←$ Es1(SPGeng(1

κ))} , and

• for every efficient adversary A the following probability is negligible in the security parameter:

Pr
[
SignTokenVf(ipk, spt, (ai)i∈R, (cj)j∈C ,M) = accept ∧

(
SigVf(sig, #„a , ipk) = reject ∨

∃k ∈ C : ComOpenVf(ak, ck, ok) = reject ∨
(
((ai)i∈R, (cj)j∈C ,M) /∈ Lspt ∧ #„a /∈ Liss

))
:

(spars, τs)←$ Es1(SPGeng(1
κ)), (isk, ipk)←$ IKGen(spars),

((ai)i∈R, (cj)j∈C , spt,M)←$ AO
issuer,Ouser

(spars, ipk),

(sig, (aj)j /∈R, (ok)k∈C)←$ Es2(τ, ipk, (ai)i∈R, (cj)j∈C , spt), #„a ← (ai)i∈R ∪ (aj)j /∈R

]
.

Here, the oracles Oissuer and Ouser are defined as follows:

• The oracle Oissuer allows the adversary to receive signatures from the issuer. It main-
tains an initially empty list Liss. On input ((ai)i∈R, (cj , πj)j /∈R), the oracle first checks that
ComProofVf(cj , πj) = accept, and then extracts (aj , oj) ←$ Ec2(τc, cj , πj) for all j /∈ R,
and defines #„a in the canonical way. It initiates an instance of the issuance protocol for
((ai)i∈R, (cj)j /∈R) acting as an honest signature issuer using isk. Finally, the oracle adds #„a
to Liss.
• The oracle Ouser(·) allows the adversary to interact with “honest users”. It maintains a list
Lsig of tuples (cid, #„a , sig) where sig denotes a signature on attributes #„a , associated with the
unique handle cid. The adversary can query the oracle in two modes:

− Being called with (obtain, #„a) the oracle initiates an instance of the issuance protocol
U .Issue(ipk, ε, #„a) in interaction with I.Issue(isk, #„a , ε). When the former outputs a sig-
nature sig, it adds the tuple (cid, #„a , sig) to Lsig, where cid is a unique handle to the
signature. It returns cid to A.

− Being called with (token, cid, R, (cj , oj)j∈C ,M) where C ∩ R = ∅ the oracle generates a
signature token. It first checks that a tuple (cid, #„a , sig) ∈ Lsig exists and that ComOpenVf(
aj , cj , oj) = accept ∀j ∈ C. If so, it returns spt←$ SigTokenGen(ipk, sig, #„a ,R, (cj , oj)j∈C ,
M) to the adversary, and adds ((ai)i∈R, (cj)j∈C ,M) to the initially empty list Lspt.

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 35

We now define user privacy, i.e., the security guarantees for users against malicious signers
and signature token verifiers. In a nutshell, we require that malicious issuers and verifiers cannot
learn more than the attributes a user willingly reveals. This includes that issuers and verifiers
must not be able to link different transactions unless this is implied by the revealed attributes
(e.g., because an attribute is unique).

Similarly to the privacy definitions of PABC, privacy of PABS schemes also comes in two
flavors, a strong and a weaker. As we will see later there exist schemes only fulfilling Weak User
Privacy and this property is enough to achieve a weakly private PABC scheme. For both the
weak and the strong version we define user privacy by requiring that the user-side sign protocol
and the generation of signature tokens can be simulated given only the public information, i.e.,
the revealed attributes and the commitments to the hidden attributes. Here we are, however, in
a much simpler situation compared with the full PABC scheme, as it is actually sufficient to just
consider a single sign protocol and for the strongest version of privacy only a single signature
token. To be able to simulate the user with only the public inputs, the system parameters for
the signature scheme need to come with a trapdoor that can be exploited by the simulators Siss
(that simulates the user-side of the issuance) and Spres (that simulates the token generation).
Thus, in both experiments we require a third simulator Sparams that outputs system parameters
which are indistinguishable from the real ones, but provide such a trapdoor. For the strong
version of privacy we can follow the composable zero-knowledge paradigm [GS08, GS12], and
this trapdoor is given to both, the simulator and the adversary. While this might look surprising
at first glance, it turns out to be necessary for proving the security of the generic construction
presented in the following section, as otherwise privacy guarantees could only be made for a
single presentation, but not for polynomially many by potentially different users. In the weak
version of privacy we cannot use the composable zero-knowledge paradigm and to be able to
give security guaranties for more than a single presentation, we use an approach very similar to
the privacy definitions of PABC where in the real world case of the experiment the adversary
has access to an oracle representing a real user and in the simulated case the adversary accesses
the simulator trough a filter filtering all secret information and thereby only giving the public
information to the simulator.

Finally, one needs to rule out that dishonest signers can generate public keys that allow
them to somehow bias the derived signatures and thus to link them. To thwart such schemes,
we require that issuers’ public keys are well-formed, i.e., verify under KeyVf. This is defined as
follows.

Definition 4.7 (Key Correctness). No efficient adversary can compute an issuer public key
ipk∗ satisfying KeyVf(ipk∗) = accept such that there do not exist random coins for IKGen gen-
erating the same public key, with more than negligible probability.

We are now ready to present our definition of user privacy.

Definition 4.8 (User privacy). For every tuple of PPT adversaries (A1,iss,A2,iss,A1,pres,
A2,pres), there exist PPT algorithms (Sparams, Siss,Spres) and a negligible function ν such that

{(spars : spars ←$ SPGens(SPGeng(1
κ))} ∼ {spars : (spars, τs)←$ Sparams(SPGeng(1

κ))} ,

and for the experiments in Figures 7 and 8 we have:

Pr[BlindIssA(1κ) = 1] ≤ 1/2 + ν(κ) and

Pr[PtPrivacyA(1κ) = 1] ≤ 1/2 + ν(κ) .

36 4. Building Blocks

Experiment BlindIssA(1κ):
(spars, τs)←$ Sparams(SPGeng(1

κ))
b←$ {0, 1}
(ipk, R, #„a , st)←$ A1,iss(spars, τs)
(ci, oi)←$ Com(ai) ∀i 6∈ R

If b = 0: Else:

b′ ←$ A
Os.obtain(spars,ipk,

#„a ,(ci,oi)i6∈R)

2,iss ((ci)i6∈R, st) b′ ←$ A
Siss(spars,τs,ipk,(ai)i∈R,(ci)i6∈R)

2,iss ((ci)i 6∈R, st)
Return 1 if and only if:
b = b′ and
KeyVf(ipk) = accept.

Fig. 7: BlindIssA(1κ)

Experiment PtPrivacyA(1κ):
(spars, τs)←$ Sparams(SPGeng(1

κ))
b←$ {0, 1}
(ipk, sig, (ci, oi)i∈C , R,

#„a ,M, st)←$ A1,pres(spars, τs)

If b = 0: Else:
spt←$ SignTokenGen(ipk, sig, #„a ,R, (ci, oi)i∈C ,M) spt←$ Spres(ipk, τs, (ai)i∈R, (ci)i∈C ,M)

b′ ←$ A2,pres(spt, (ci)i∈C , st)
Return 1 if and only if:
b = b′,
ComOpenVf(ci, ai, oi) = accept for all i ∈ C,
KeyVf(ipk) = accept, and
SignVf(sig, #„a , ipk) = accept.

Fig. 8: PtPrivacyA(1κ)

Here, the oracle Os.obtain used in the experiment BlindIssA allows the adversary to interact
with “honest users”. Being called with (spars, ipk, #„a , (ci, oi)i 6∈R) the oracle initiates an instance
of the issuance protocol with the adversary acting as issuer.

When comparing this definition with the privacy definition of PABC (Definition 3.2), we see
that here we have defined the experiments for signing (issuing of credentials) and for signature
tokens (presentation tokens) separately. Furthermore, here we do not use a filter functionality F .
We made both these choices for simplicity. In fact, the filter functionality here would be rather
trivial, it would just not pass the openings of the commitments and the non-revealed attributes
to the simulator. In the experiments above, this is explicitly dropped from the inputs to the
simulators. Merging the experiments into a single would complicate the experiments without
reason. Also, separate experiments are useful for analyzing schemes that satisfy only one of the
two, as described below with a weaker definition of privacy, where BlindIssA is the same in both
definitions.

In the above definition, the adversary learns the signature itself, and must still not be able
to distinguish real and fake presentations. However, many practically used schemes such as
Microsoft’s UProve do not achieve this goal. We therefore next describe an alternative, weaker
notion user privacy, called weak user privacy, where apart from blind issuance, the adversary
must only be unable to link presentations to specific issuance sessions, but might be able to
link any two presentation tokens that were derived from the same signature. This property is
referred to as untraceability.

The idea of the following definition is that the adversary, acting as the issuer, can ask an
honest-user oracle to obtain an arbitrary number of signatures. Furthermore, receiving handles
to those signatures (but not the signatures themselves) the adversary can request arbitrarily
many presentation tokens for any of these signatures, where the presentation tokens will be
honestly computed in the real world, but will be simulated only using the revealed attributes
and the handle to the signature (but not the signature itself) in the ideal world. Giving the

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 37

Experiment UntraceabilityA(1κ):
(spars, τs)←$ Sparams(SPGeng(1

κ))
b←$ {0, 1}

If b = 0: Else:

b′ ←$ A
Os.user(·)
1,pres (spars, τs) b′ ←$ A

FSigU(·)|Spres(τs)
1,pres (spars, τs)

Return 1 if and only if
b = b′

Fig. 9: UntraceabilityA(1κ)

handle to the simulator is crucial, as in the real world presentation tokens might be linkable,
and the simulator needs to know whether or not it has to simulate this linkability as well
when receiving multiple presentation requests. The adversary wins if he can distinguish the two
worlds.

Definition 4.9 (Weak User Privacy). For every tuple of PPT adversaries (A1,iss,A2,iss,
A1,pres,A2,pres), there exist PPT algorithms (Sparams,Siss,Spres) and a negligible function ν
such that for the experiments in Figures 7 and 9 we have:

Pr[BlindIssA(1κ) = 1] ≤ 1/2 + ν(κ) and

Pr[UntraceabilityA(1κ) = 1] ≤ 1/2 + ν(κ) .

Honest User Oracle Os.user. The user oracle gives the adversary access to honest users, which
he can trigger to obtain signatures on inputs of his choice and request signature presentation
tokens on inputs of his choice. The adversary does not get to see the actual signatures, but is
only given a unique signature identifier idsig by which he can refer to the signature. It provides
the following interfaces:

• On input (obtain, ipk, #„a ,R) the oracle commits to all messages (ci, oi) ←$ Com(ai)∀i 6∈ R
and executes sig/⊥ ←$ U .Sign(ipk, (cj , oj)j /∈R,

#„a), with the adversary playing the role of the
issuer. The oracle adds (idsig, sig, #„a) to an initially empty list L, where idsig is a unique
pointer, and returns idsig to the adversary.

In the experiment, we write sig(idsig) to refer to the (unique) signature sig such that
(idsig, sig, #„a) ∈ L, or sig(idsig) = ⊥ if no such entry exists.

• On input (pres, ipk, idsig,
#„a ,R, (ci, oi)i∈C ,M), the oracle looks up (idsig, sig, #„a) ∈ L, return-

ing ⊥ if no tuple is found. It then computes spt←$ SignTokenGen(ipk, sig, #„a ,R, (ci, oi)i∈C ,M)
and returns spt to the adversary.

Honest User Filter FSigU. FSigU gives the adversary access to a simulator, which simulates
the generation of a signature proof token from only the released attributes. It provides the
following interfaces:

• On input (obtain, ipk, #„a ,R), FSigU commits to all messages (ci, oi)←$ Com(ai) for all i 6∈ R
and executes sig/⊥ ←$ U .Sign(ipk, (cj , oj)j /∈R,

#„a), with the adversary playing the role of the
issuer. FSigU adds (idsig,

#„a) to an initially empty list L, where idsig is a unique pointer, and
returns idsig to the adversary.

• On input (pres, ipk, idsig,
#„a ,R, (ci, oi)i∈C ,M), the filter looks up (idsig,

#„a) ∈ L, returning
⊥ if no tuple is found. It then computes spt ←$ Spres(ipk, τ, idsig, R, (ai)i∈R, (ci)i∈C ,M) and
returns spt.

38 4. Building Blocks

4.3.3 Relation of Privacy Definitions

Lemma 4.10. Definition 4.8 implies Definition 4.9, but not vice versa. More formally, every
user private PABS scheme is also weakly user private, but there exist user weakly private PABS
schemes that are not (fully) user private.

Proof. Let be given a PABS satisfying (full) privacy, and let (Sparams,Siss,Spres) be the respec-
tive simulators. Define S′pres such that it just forwards all inputs except for idsig to an internal
copy of Spres, and outputs whatever Spres returns. We then show that (Sparams,Siss,S

′
pres) is a

valid simulator for weak privacy.

Blind issuance is clear. For untraceability, consider the following hybrid argument: in hybrid
Hi, the first i presentation requests of an adversary A are answered byOs.user, and all subsequent
requests are answered by S′pres. Let q be an integer such that with overwhelming probability A
makes at most q presentation requests to its oracle. Note that q is polynomially bounded by
the running time of A. If A can win Experiment Untraceability with some probability ε, then he
can distinguish Hk and Hk+1 with probability at least negligibly close to ε/q for some k.

Consider now the following adversary A′, which internally executes a copy of A. Whenever
A makes an obtain-request to its oracle, A′ (in both, A′1 and A′2) perfectly simulates the oracle,
i.e., it plays the role of the honest user. Furthermore, A′1 answers the first k pres-requests with
simulated presentation tokens. Upon receiving the (k + 1)st presentation requests, A′1 outputs
the respective (ipk, sig, C,R, #„a ,M, st), and replies to the internal copy of A whatever it receives
in the experiment, i.e., either a honestly computed or a simulated presentation token. All further
presentation requests are answered honestly by A′2.

It can now be seen that A′ can win Experiment PtPrivacy with the same probability as
A wins in Experiment Untraceability. As the given scheme is user private by assumption, this
probability is negligible, and the weak user privacy follows.

To see that the other direction does not hold, we refer to Section 7.4. The scheme there is
weakly user private by Lemma 8.9, but not user private, as the signature presentation tokens
reveal parts of the signature without re-randomizing them before. ut

4.4 Revocation Schemes

Suppose a set of users, e.g., employees, that is granted access to some online resource. Then this
set will often change over time. While adding users would be possible with the features presented
so far, revoking access for specific users was not. In the following we thus define revocation for
signature systems.

The following definition uses a blacklisting approach rather than whitelisting. We believe
that for our scenario this is the natural choice, as in real-world applications the number of active
signatures will usually be higher than that of revoked ones. Furthermore, whitelists would require
verifiers to update their local copy every time a new signature was issued, while for blacklisting
different verifiers may obtain updates at different intervals, depending on their security policies,
making it easier to realize offline applications.

4.4.1 Syntax

After having set up system parameters, a revocation authority generates a secret revocation key,
together with some public revocation key and revocation information. Using its secret key, the
authority can revoke attributes by updating the revocation information accordingly. Proving
that an attribute has not yet been revoked is again done non-interactively: a user can generate
a token showing that some commitment contains an unrevoked attribute. This token can later
be publicly verified.

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 39

System Parameter Generation. The system parameters of a revocation system are gener-
ated as

sparr = (sparg,RS, spar′r)←$ SPGenr(sparg) ,

where the input are global system parameters, and

• RS specifies the set of supported revocation handles, and
• spar′r potentially specifies further revocation parameters.

The system parameters are input to any of the other algorithms of the scheme. However,
for notational convenience, we will sometimes not make this explicit.

Revocation Setup. The revocation authority (possibly, but not necessarily the issuer) runs
the revocation setup to obtain a secret key rsk, an associated public key rpk and a public
revocation information RI:

(rsk, rpk,RI)←$ RKGen(sparr) .

Attribute Revocation. An attribute can get revoked by a revocation authority by “excluding”
a certain attribute a from the public revocation information RI.

RI′ ←$ Revoke(rsk,RI, a) .

Revocation Token Generation. A user can generate a token proving that a certain attribute,
committed to in c, has not been revoked before:

rt/⊥ ←$ RevTokenGen(a, c, o,RI, rpk) .

In practice, a revocation presentation will always be tied to a signature presentation, to prove
that a presentation signature is valid. The value of c in the former will therefore be one of the
commitments from the presentation step.

Revocation Token Verification. A revocation token can be verified as follows:

accept/reject← RevTokenVf(rt, c,RI, rpk) .

4.4.2 Security Definitions for Revocation Schemes

We require that whenever an honestly computed revocation information RI is used, an honest
user is able to successfully generate valid tokens:

Definition 4.11 (Revocation correctness). There exists a negligible function ν such that
the following holds for all ordered sets A of attributes and a′ /∈ A:

Pr[RevTokenVf(rt, c′,RI, rpk) = reject :

sparg ←$ SPGeng(1
κ), sparr ←$ SPGenr(sparg), (c

′, o′)←$ Com(a′),

(rsk, rpk,RI)←$ RKGen(sparr),RI←$ Revoke(rsk,RI, a) ∀a ∈ A,
rt←$ RevTokenGen(a′, c′, o′,RI, rpk)] ≤ ν(κ) .

Revocation soundness captures the following: To make the verifier accept, the user must
know the attribute contained in the commitment it computes a revocation token for. Further,
nobody except for the revocation authority can come up with a new valid revocation information,
i.e., the revocation information is always authentic. Finally, this attribute must not have been
revoked in an earlier revocation step.

Definition 4.12 (Revocation Soundness). A revocation scheme is sound if there exists an
efficient algorithm Er = (Er1,E

r
2), called the extractor, that satisfies the following properties:

40 4. Building Blocks

• Er1 outputs parameters and trapdoors, such that the parameters are indistinguishable from
correctly computed system parameters:

{sparr : sparr ←$ SPGenr(SPGeng(1
κ, λ))} ∼ {sparr : (sparr, τr)←$ Er1(SPGeng(1

κ, λ))} ,

and

• for every efficient adversary A there exists a negligible function such that:

Pr
[
RevTokenVf(rt, c,RIA, rpk) = accept ∧

(
ComOpenVf(c, a, o) = reject ∨

@ (RIA, epoch, a′) ∈ L ∨ ∃ (RIA, epoch, a′), (RI′, epoch′, a) ∈ L : epoch′ ≤ epoch
)

:

(sparr, τr)←$ Er1(SPGeng(1
κ, λ)), (rsk, rpk,RI0)←$ RKGen(sparr),

(RIA, rt, c)←$ AO
revoke

(rpk,RI0, sparr), (a, o)←$ Er2(τr, rpk, rt, c)
]
≤ ν(κ).

Here, the oracle Orevoke simulates an honest revocation authority as follows, where initially
L = ∅ and epoch = 0:

• On input (revoke, a) for some attribute a ∈ AS, the oracle first revokes a by computing RI′ ←$
Revoke(rsk,RI, a). It then updates its internal state as RI← RI′ and epoch← epoch + 1. It
then adds (RI, epoch, a) to L, and hands back the updated revocation information RI to the
adversary.

Revocation privacy ensures that no adversary can tell which of two unrevoked attributes
a0, a1 underlies a revocation token. It is formally defined through the following experiment.

Definition 4.13 (Revocation Privacy). A revocation scheme is private, if for every efficient
adversary A there exists a negligible function ν such that the following holds:

Pr
[
b′ = b ∧ rt0 6= ⊥ ∧ rt1 6= ⊥ : sparg ←$ SPGeng(1

κ),

sparr ←$ SPGenr(sparg), (rpk,RI, a0, a1, st)←$ A(sparr),

(ci, oi)←$ Com(ai), rti ←$ RevTokenGen(sparr, ai, ci, oi,RI, rpk), i = 0, 1,

b←$ {0, 1}, b′ ←$ A(cb, rtb, st)
]
≤ 1

2
+ ν(κ) .

4.5 Pseudonyms

Users can be known under different pseudonyms to different credential issuers and verifiers,
which are all mutually unlinkable.

4.5.1 Syntax

System Parameter Generation. The system parameters of a pseudonym system are gener-
ated as

sparp = (sparg, spar′p)←$ SPGenp(sparg) ,

where the input are global system parameters, and

• spar′p potentially specifies further pseudonym parameters.

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 41

The system parameters are input to any of the other algorithms of the scheme. However,
for notational convenience, we will sometimes not make this explicit.

User key generation. A user generates his secret key as usk←$ UKGen(sparp).

Pseudonym generation. A pseudonym nym for a given user secret key and a scope ∈ {0, 1}∗
can be computed deterministically as:

nym← NymGen(usk, scope) .

Pseudonym presentation. On input a user’s secret key usk, a commitment c to usk with
opening information o, and a scope string scope ∈ {0, 1}∗, the pseudonym presentation algorithm
generates a pseudonym nym with a proof π:

(nym, π)←$ NymPres(usk, c, o, scope) .

Pseudonym verification. A pseudonym nym and pseudonym proof π are verified for a
commitment c and scope scope as

accept/reject← NymVf(sparp, c, scope,nym, π) .

4.5.2 Security Definitions for Pseudonyms

In a pseudonym system, users can derive pseudonyms from their secret key and arbitrary scope
strings, and prove that they indeed know the secret key used to compute this pseudonym.
Correctness and key extractability guarantee that honest users can perform such proofs, and
that the verifier is guaranteed that the user indeed knows the used secret key. Collision resistance
then guarantees that for each scope string, any two users will have different pseudonyms with
overwhelming probability. Finally, unlinkability guarantees that users cannot be linked across
scopes.

Definition 4.14 (Correctness). There exists a negligible function ν such for all scope ∈
{0, 1}∗ it holds that:

Pr
[
NymVf(sparp, c, scope,nym, π) = reject ∨ nym 6= NymGen(usk, scope) :

sparg ←$ SPGeng(1
κ), sparp ←$ SPGenp(sparg), usk←$ UKGen(sparp),

(c, o)←$ Com(usk), (nym, π)←$ NymPres(usk, c, o, scope)
]
≤ ν(κ) .

Definition 4.15 (Key Extractability). A pseudonym system is key extractable, if (SPGenp,
NymGen,NymVf) is a non-interactive proof of knowledge for the following relation, cf. § 2.2.1:

((c, scope,nym), (usk, o)) ∈ R :⇔ NymGen(usk, scope) = nym ∧ ComOpenVf(usk, c, o) = accept .

Definition 4.16 (Collision resistance). A pseudonym system is collision resistant, if for
every PPT algorithm A there is a negligible function ν such that:

Pr[NymGen(usk0, scope) = NymGen(usk1, scope) :

(usk0, usk1, scope)←$ A(SPGenp(SPGeng(1
κ)))] ≤ ν(κ) .

Definition 4.17 (Pseudonym unlinkability). We define pseudonym unlinkability as a game
between the adversary and two oracles O0(usk0, ·),O1(usk1, ·) simulating honest users as follows,
where the oracles share initially empty lists Lscope and Lcom:

42 4. Building Blocks

Experiment LinkNymsA(1κ):
sparg ←$ SPGeng(1

κ)
sparp ←$ SPGens(sparg)
usk0, usk1 ←$ UKGen(sparp)
b←$ {0, 1}
(scope∗, st)←$ A

O0(usk0,·),O1(usk1,·)
1 (sparp)

(c∗, o∗)←$ Com(uskb)
(nym∗, π∗nym)←$ NymPres(uskb, c

∗, o∗, scope∗)

b′ ←$ A
O0(usk0,·),O1(usk1,·)
2 (nym∗, π∗nym, c

∗)
Return 1 if and only if:
b = b′,
scope∗ 6∈ Lscope, and
c∗ 6= c ∀(usk, c, o) ∈ Lcom.

Fig. 10: LinkNymsA(1κ)

• On input (c, scope), oracle Oi checks whether there exists (uski, c, o) ∈ Lcom if c 6= ⊥. If
it does, it returns (nym, π) ←$ NymPres(uski, c, o, scope) to A and aborts otherwise. If c =
⊥, the oracle computes (c′, o′) ←$ Com(uski), adds (uski, c

′, o′) to Lcom, sets (nym, πnym) ←$
NymPres(uski, c

′, o′, scope) and returns (nym, π, c′) to A. If no abort occurred, the oracle adds
scope to Lscope.

We now require that for every PPT adversary A = (A1,A2) we have that for some negligible
function ν it holds that:

Pr[LinkNymsA(1κ) = 1] ≤ 1/2 + ν(κ) .

Chapter 5

Generic Construction of PABCs
Our generic construction of a PABC system uses the following components:

• A global setup algorithm SPGeng,
• a commitment scheme

(SPGenc,ComKGen,Com,ComPf,ComOpenVf) ,

• a PABS scheme

(SPGens, IKGen,KeyVf,U .Sign, I.Sign, SigVf, SignTokenGen,SignTokenVf)

• a revocation scheme

(SPGenr,Revoke,RevTokenGen,RevTokenVf) , and

• a pseudonym scheme

(SPGenp,UKGen,NymGen,NymPres,NymVf) .

5.1 Intuition

We next very briefly describe the intuition underlying our generic construction.
The idea is to use the underlying pseudonym and revocation schemes unchanged to obtain

the according properties for the PABC-system. Issuance and presentation are realized via the
given PABS-scheme. However, instead of just signing the attributes, the issuer additionally signs
the user secret key and the revocation handle whenever applicable. Similarly, whenever a user
computes a presentation token for a set of credentials, it proves knowledge of the according
signature on the contained attributes, the revocation handle, and the user secret key. Thereby,
the user secret key is always treated as an unrevealed attribute.

The seemingly independent components are linked together via the commitments being
used. For instance, the same commitment/opening pair is used to generate revocation tokens
(RevTokenGen) and signature presentation tokens (SignTokenGen), guaranteeing that indeed the
revocation handle contained in the credential was also shown to be unrevoked.

5.2 Formal Description of the Construction

In the following, let eq be a function mapping an attribute index (i, j) to its equivalence class
as induced by the equivalence relation E, i.e.,

eq(i, j) = {(i, j)} ∪ {(i′, j′) : ((i, j), (i′, j′)) ∈ E}

and let E be the set of equivalence classes defined by E. By (ae)e∈E we denote the common
attribute values such that eq(i, j) = e⇒ ai,j = ae. Finally, let Ei = {j : ((i, j), (i′, j′)) ∈ E}.

System parameter generation. The system parameters for the PABC scheme are generated
by generating:

• global system parameters sparg = (1κ, `, `′, sparc, ck, spar′g)←$ SPGeng(1
κ),

43

44 5. Generic Construction of PABCs

(cusk, ousk)←$ Com(usk)
if scope = ε:

(nym, πnym) = (ε, ε)
else:

(nym, πnym)←$ NymPres(usk, cusk, ousk, scope)
(ce, oe)←$ Com(ae) ∀e ∈ E
for i = 1, . . . , k do:

if credi is revocable:
(crh,i, orh,i)←$ Com(rhi)
rti ←$ RevTokenGen(rhi, crh,i, orh,i,RIi, rpki)

else:
(crh,i, orh,i)← (ε, ε)

M̂
′

= M̂‖scope‖(ipki, (ai,j)j∈Ri)
k
i=1‖E

for i = 1, . . . , k do:

spti ←$ SignTokenGen(ipk′i, sigi, ((ai,j)
ni
j=1, usk, rhi), Ri, ((ceq(i,j), oeq(i,j))j∈Ei , cusk, ousk, crh,i, orh,i), M̂

′
)

pt = (cusk, πnym, (ce)e∈E , (crh,i, rti, spti)
k
i=1)

if rti 6= ⊥ and spti 6= ⊥ for i = 1, . . . , k :
Output (nym, pt)

else :
Output (⊥,⊥)

Fig. 11: AuxPresent(usk, scope, (ipki,RIi, credi, (ai,j)
ni
j=1, Ri)

k
i=1, E, M̂)

M̂
′

= M̂‖scope‖(ipki, (ai,j)j∈Ri)
k
i=1‖E

if scope 6= ε ∧ NymVf(cusk, scope,nym, πnym) = reject:
Output reject for i = 1, . . . , k do:
if RevTokenVf(rti, crh,i,RIi, rpki) = reject or

SignTokenVf(ipki, spti, (ai,j)j∈Ri , ((ceq(i,j))j∈Ei , cusk, crh,i)
k
i=1, M̂

′
) = reject:

Output reject
Output accept

Fig. 12: AuxVerify(nym, pt, scope, (ipki,RIi, (ai,j)j∈Ri)
k
i=1, E, M̂)

• signature system parameters spars ←$ SPGens(sparg),
• revocation system parameters sparr = (sparg, spar′r)←$ SPGenr(sparg), and
• pseudonym system parameters sparr ←$ SPGenr(sparg),

and outputting:

spar = (sparg, spars, sparr, sparp) ,

We assume that the algorithms of all building blocks take their respective parameters as implicit
inputs.

User key generation. Users generate their secret keys as usk←$ UKGen(1κ).

Issuer key generation. Issuers generate a signature key pair (ipk′, isk′)←$ IKGen(spars) and
revocation keys (rsk, rpk,RI)←$ RKGen(sparr).

The public key is ipk = (ipk′, rpk), the secret key isk = (isk′, rsk), and the initial revocation
information RI.

Presentation. The algorithm Present takes (usk, scope, (ipki,RIi, credi, (ai,j)
ni
j=1, Ri)

k
i=1, E,M)

as inputs, and outputs whatever AuxPresent specified in Figure 11 outputs, where ipki =
(ipk′i, rpki) and credi = (sigi, rhi) are as before, and M̂ = pres‖M.

Presentation verification. On inputs (nym, pt, scope, (ipki,RIi, (ai,j)j∈Ri)
k
i=1, E,M), Verify

outputs accept if and only if AuxVerify described in Figure 12 outputs accept.

Issuance token generation. An issuance token for (usk, scope, rhk+1, (ipki,RIi, credi, (ai,j)
ni
j=1,

Ri)
k+1
i=1 , E,M) is generated as specified in Figure 13.

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 45

(nym, pt)←$ AuxPresent(usk, scope, (ipki,RIi, credi, (ai,j)
ni
j=1, Ri)

k
i=1, E, iss‖M),

thereby saving the used (ce, oe)e∈E
(cj , oj)←$ Com(ak+1,j) ∀j /∈ Rk+1 ∪ Ek+1

πj ←$ ComPf(ceq(k+1,j), oeq(k+1,j), ak+1,j) ∀j ∈ Ek+1

πj ←$ ComPf(cj , oj , ak+1,j) ∀j /∈ Rk+1 ∪ Ek+1

πusk ←$ ComPf(cusk, ousk, usk)
pit = (pt, rhk+1, (cj)j 6∈Rk+1∪Ek+1 , πusk, (πj)j /∈Rk+1

)

sit = ((ceq(k+1,j), oeq(k+1,j))j∈Ek+1 , (cj , oj)j /∈Rk+1∪Ek+1
, cusk, ousk, ipk′k+1, (ak+1,j)

nk+1

j=1 , usk, rhk+1)
Output (pit, sit,nym)

Fig. 13: ITGen(usk, scope, rhk+1, (ipki,RIi, credi, (ai,j)
ni
j=1, Ri)

k+1
i=1 , E,M)

Issuance token verification. Given an issuance token pit = (pt, rhk+1, (ck+1,j , πk+1,j)j 6∈Rk+1
,

πusk), the verifier returns accept iff:

AuxVerify
(
nym, pt, scope, (ipki,RIi, (ai,j)j∈Ri)

k
i=1, E, iss‖M

)
= accept.

Issuance. To get a credential issued, the user runs

U .Sign(ipk′k+1, ((ceq(k+1,j), oeq(k+1,j))j∈Ek+1
, (cj , oj)j /∈Rk+1∪Ek+1

,

cusk, ousk), ((ak+1,j)
nk+1

j=1 , usk, rhk+1)) ,

obtaining all the required inputs from sit, while the issuer runs

I.Sign(isk′, ((ai)i∈Rk+1
, rhk+1), ((ceq(k+1,j), πj)j∈Ek+1

, (cj , πj)j /∈Rk+1∪Ek+1
, (cusk, πusk))) ,

obtaining its inputs from isk and pit. When the user’s protocol returns sig, the user’s issuance
algorithm returns cred = (sig, rhk+1).

Revocation. On input an issuer secret key isk = (isk′, rsk), a revocation information RI and
a revocation handle rh, the revocation algorithm returns RI′ ←$ Revoke(rsk,RI, rh).

Chapter 6

Security of the Generic Construction
In the following we prove the security properties of the generic construction.

6.1 Correctness

Theorem 6.1. The constructed scheme is correct, if all building blocks are correct.

This claim is straightforward to verify, and thus the formal proof is omitted.

6.2 Pseudonym Collision-Resistance

Theorem 6.2. The pseudonyms of our generic construction are collision resistant and deter-
ministic, if the underlying pseudonym system is collision resistant.

Proof. The claim follows directly from the way pseudonyms are computed in Present and ITGen,
using that NymGen in § 4.5 is deterministic by definition. ut

6.3 Unforgeability

Theorem 6.3. Our generic construction is unforgeable if the revocation scheme is sound, the
pseudonym scheme is key-extractable, the commitment scheme is opening-extractable and bind-
ing, and the PABS scheme is unforgeable.

Proof. We prove the above theorem through a sequence of games played with the unforgeability
adversary A. The first game Game 0 is the normal security experiment as defined in § 3.3.3.
The last game is such that, given an adversary A who has non-negligible success in winning
it, we can construct a polynomial-time adversary B against the unforgeability of the signature
scheme, cf. Definition 4.6. For each hop between intermediate games, we show that they are
indistinguishable from the adversary’s view under appropriate assumptions.

Game 0: This is the original unforgeability experiment as defined in § 3.3.3.
Game 1: This game relies on the revocation soundness property (see Definition 4.12) to generate

simulated system parameters (sparr, τr) ←$ Er1(sparg) and extract the revocation handles
and opening information (rhri , o

r
rh,i) ←$ Er2(sparr, τr, crh,i, rti) from all commitments crh,i in

presentation and issuance tokens produced by the adversary in the sets F and IT . Let RIi
be the revocation information used in each token and let epochi be the highest value so that
(ipki,RIi, epochi) ∈ RI. The game aborts if ComOpenVf(crh,i, rhri , o

r
rh,i) = reject or if rhri was

revoked at epochi, i.e., if there exists (ipki, rhi, epoch′i) ∈ RRH such that epoch′i ≤ epochi.
Any adversary A that causes this to happen can be used to build an adversary B that breaks
the revocation soundness by, on input rpk,RI, sparr, using rpk and RI as part of the public
key and revocation information of a random honest issuer I∗. It runs the code of Game 1, but
responds to revocation queries for issuer I∗ using its own Orevoke oracle. At the end of the
game, B outputs a commitment crh,i and revocation token rti from a random presentation
or issuance token and for a random i such that ipki = ipk∗I∗ .
As simulated and real parameters are indistinguishable, this game is indistinguishable from
the previous one, as long as no abort happens. However, by the above arguments, the latter
only happens with negligible probability.

46

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 47

Game 2: This game relies on the key extractability of the pseudonym scheme (see Defini-
tion 4.15) to generate the pseudonym parameters as (sparp, τp) ←$ E

p
1(sparg) and extract

the user secret keys and opening information (uskp, o
p
usk) ←

$ E
p
2(sparp, τp, cusk, scope,nym, π)

from all presentation and issuance tokens in F∪IT for which scope 6= ε. Note that the key ex-
tractability property guarantees that NymGen(usk, scope) = nym and ComOpenVf(uskp, cusk,
o
p
usk) = accept.

As simulated and real parameters are indistinguishable, this game is indistinguishable from
the previous one.

Game 3: This game uses the opening extractability of the commitment scheme (see Defini-
tion 4.4) to generate the commitment parameters as (sparc, τc)←$ Ec1(1

κ, `′).
As simulated and real parameters are indistinguishable, this game is indistinguishable from
the previous one.

Game 4: This game uses the unforgeability of the PABS scheme as per Definition 4.6 to ex-
tract signatures from all presentation and issuance tokens produced by the adversary. More
specifically, it generates (spars, τs) ←$ Es1(sparg) and extracts (sigi, ((α

s
i,j)j 6∈Ri , usksi , rhsi),

((osi,j)j∈Ei , o
s
usk,i, o

s
rh,i)) ←$ E2(τs, ipki, (ai,j)j∈Ri , ((ceq(i,j))j∈Ei , cusk, crh,i), spti) for all presen-

tation and issuance tokens in F ∪ IT and for all i where ipki ∈ IK∗. Let αsi,j ← ai,j for
all j ∈ Ri. If for some of the extracted signatures, attributes, and opening information
SigVf(sigi, (α

s
i,1, . . . , α

s
i,ni
, usksi , rhsi), ipk) = reject, ComOpenVf(αsi,j , ceq(i,j), o

s
i,j) = reject for

some j ∈ Ei, ComOpenVf(usksi , cusk, o
s
usk,i) = reject, or ComOpenVf(rhsi , crh,i, o

s
rh,i) = reject,

then the game aborts.
An adversary A that causes the game to abort can be used to build a forger B for the PABS
scheme as follows. On input spars, ipk, algorithm B generates parameters for the pseudonym
and revocation scheme and guesses a random issuer index I∗ ←$ {1, . . . , nI}. It generates
fresh user secret keys (usk∗i)

nU
i=1 for all users and fresh revocation keys (rski, rpki,RIi)

nI
i=1 for

all issuers. It also generates fresh issuer keys (ipk∗i , isk∗i)
nI
i=1,i 6=I∗ for all issuers i 6= I∗, but

sets ipk∗I∗ ← ipk. It answers A’s oracle queries as follows:
• Oissuer(issue,nym, pit, scope, rh, (ipki,RIi, (ai,j)j∈Ri)

k+1
i=1 , E,M): Algorithm B first ver-

ifies the issuance token pit and, if ipkk+1 6= ipk∗I∗ , performs a normal issuance pro-
tocol since it knows all required keys. If ipkk+1 = ipk∗I∗ , B queries its own oracle
Oissuer((ak+1,j)j∈Rk+1

, (ceq(k+1,j), πeq(k+1,j))j∈Ek+1
, (cj , πj)j 6∈Rk+1∪Ek+1

) and forwards all
forthcoming messages back and forth between A and the oracle.
• Oissuer(revoke, I, rh): As in the normal game.
• Ouser(present, U, scope, (ipki,RIi, cidi, Ri)

k
i=1, E,M): It follows the steps for the Present

algorithm, but for those i where ipki = ipk∗I∗ B generates spti by querying its own Ouser

oracle on input (token, cidi, Ri, ((ceq(i,j), oeq(i,j))j∈Ei , (cusk, ousk), (crh,i, orh,i)),M
′), where

M′ = presentation‖M‖scope‖(ipki, (ai,j)j∈Ri)
k
i=1‖E.

• Ouser(obtain, U, scope, rh, (ipki,RIi, cidi, Ri)
k+1
i=1 , E,M, (ak+1,j)

nk+1

j=1): B generates the is-
suance token similarly as above, using its own Ouser oracle to generate the parts spti
whenever ipki = ipk∗I∗ . If ipkk+1 6= ipk∗I∗ , then it proceeds with issuance as usual. If
ipkk+1 = ipk∗I∗ , then it queries its own oracle Ouser(obtain, (#„a , usk∗U , rh)) and relays the
subsequent responses between A and the oracle.

Eventually, when A outputs its set of forgeries F , B chooses a random index i from a random
presentation or issuance token from F ∪ IT and outputs ((ai,j)j∈Ri , ((ceq(i,j), oeq(i,j))j∈Ei ,
(cusk, ousk), (crh,i, orh,i)), spti). One can see that A’s view is exactly as in a real game. If A has
a non-negligible chance of causing Game 3 to abort, however, then the above output has a
non-negligible chance of making B win the unforgeability game.

Game 5: This game checks that for all commitments that are extracted multiple times during
the game, the same value is always extracted. If at some point different values are extracted
for the same commitment, the game aborts; it is clear that any such event directly leads
to an attacker breaking the binding property of the commitment scheme. In particular, for

48 6. Security of the Generic Construction

all commitments cusk extracted in Game 2 and Game 4, it checks that uskp = usksigi for all
i = 1, . . . , k; for all commitments crh,i extracted in Game 1 and Game 4 that rhri = rhsi
for all i = 1, . . . , k; for all commitments ce extracted in Game 4 that αsi,j = αsi′,j′ for all
((i, j), (i′, j′)) ∈ E. Since they are now all equal, we denote the extracted values as usk, rhi,
and ae, respectively.

We now show that any adversary A winning Game 5 can be used to build a forging adversary
B against the PABS scheme as per Definition 4.6. Algorithm B simulates A’s input and oracles
exactly as in the reduction of Game 4. When A outputs its set of tokens F , consider the set
CRED containing all tuples (usk, ipk∗I , rh, (α1, . . . , αn)) that B extracted from the presentation
and issuance tokens in F and IT , and let USK be the set of all extracted user secret keys. To win
the PABC unforgeability game, there cannot exist sets CRED and USK satisfying Conditions 1
and 2. We first argue that the sets CRED and USK we just constructed satisfy Condition 2a, so
that they must not satisfy Condition 1. We then show how B can use sets violating Condition 1
to win the PABS unforgeability game.

One can see that Condition 2a, requiring that all credentials in the same token are bound
to the same user secret, would have caused B to abort due to the changes in Game 5. Likewise,
Condition 2b is satisfied by Game 2, Condition 2c is by Game 4, Condition 2d by Game 5,
and Condition 2e by Game 1. Since CRED and USK thereby satisfy Condition 1, they must
violate Condition 2. That is, there must exist a revocation handle rh and an honest issuer public
key ipk such that there are more tuples (usk, ipk, rh, #„a) ∈ CRED than tuples (ipk, rh) ∈ IRH.
If ipk 6= ipk∗I∗ , then B aborts. Otherwise, since B’s oracle Oissuer adds at most one vector
(#„a , usk, rh) to Liss in each call to Oissuer, by a simple counting argument there must be at
least one tuple (usk, ipk, rh, #„a) ∈ CRED such that (#„a , usk, rh) 6∈ Liss. Adversary B then selects
one of these tuples at random and uses the corresponding extracted signature sig to generate a
signature token spt←$ SignTokenGen(ipk∗I∗, sig, (#„a , usk, rh), {1, . . . , n+2}, ∅,M) for an arbitrary
message M that B never queried to its Ouser oracle. This tuple definitely satisfies the condition
that (#„a , usk, rh), ε,M) /∈ Lspt and with probability at least 1/]CRED also satisfies (#„a , usk, rh) /∈
Liss. ut

6.4 Simulatable Privacy

We here prove the privacy property of the generic construction in § 5. There are two proofs, one
for privacy and one for weak privacy. Which of these the generic construction fulfills depends
on security property of the underlying PABS scheme.

Theorem 6.4 (Simulatable Privacy).

The PABC-system resulting from the generic construction presented in § 5 is private in the
sense of Definition 3.2, if the underlying commitment scheme is hiding, the PABS-scheme is user
private according to Definition 4.8, the revocation scheme is private according to Definition 4.13,
and the pseudonym system is unlinkable according to Definition 4.17.

Proof. We prove the statement through a sequence of games played with the adversary, such
that each game is computationally indistinguishable from the previous game. The first game is
game of experiment t PrivacyA(1κ, nU) for b = 0, where the adversary is interacting with honest
user oracles, and the last game defines simulators for the same experiment with b = 1.

Game 0: This game is the game of experiment PrivacyA(1κ, nU) for b = 0, i.e., the case where
the adversary is interacting with the honest user oracle.

Game 1a-1c: These games rely on the user privacy of the PABS-scheme (Definition 4.8) to
simulate the PABS-signatures without knowledge of the hidden attributes.

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 49

Game 1a: This game uses simulated system parameters for the PABS-scheme. Instead of ex-
ecuting SPGen, this game execute S1 where S1 is defined as computing all system pa-
rameters like SPGen, except instead of computing spars ←$ SPGens(sparg), S1 computes
(spars, τ)←$ Sparams(sparg), with Sparams from Definition 4.8.

Game 1b: This game calls a simulator, using the simulated system parameters to be able to
generate simulated presentation tokens.
In this game the oracle Ouser is updated such that:
• instead of executing

Present
(
usk∗U , scope, (ipki,RIi, credi = (sigi, rhi), (ai,j)

ni
j=1, Ri)

k
i=1, E,M

)
it executes

S2
(
τ, present, usk∗U , scope, (ipki,RIi, cred′i = (ε, rhi), (ai,j)

ni
j=1, Ri)

k
i=1, E,M

)
;

• and instead of

ITGen
(
usk∗U , scope, rh, (ipki,RIi, (sigi, rhi), (ai,j)

ni
j=1, Ri)

k+1
i=1 , E,M

)
,

it executes

S2
(
τ, obtain, usk∗U , scope, (ipki,RIi, (ε, rhi), (ai,j)

ni
j=1, Ri)

k
i=1, E,M, rh

)
.

S2 works exactly like Present and ITGen except for the following change: For both algorithms,
AuxPresent (Fig 11) is modified such:

SignTokenGen(ipk′i, sigi, ((ai,j)
ni
j=1, usk, rhi), Ri, ((ceq(i,j), oeq(i,j))j∈Ei , cusk, ousk, crh,i, orh,i), M̂

′
)

is replaced by:

Spres(ipk′, τ, (ai,j)j∈Ri , ((ceq(i,j))j∈Ei , cusk, crh,i), M̂
′
)

from Definition 4.8. That is, for presentation and issuer token generation all private inputs
are discarded and the public inputs are passed on to the simulator Spres.

Game 1c: In this game also the issuances of signatures are simulated. This is done by updating
the oracle Ouser such that every call to U .Issue(sit) is changed into a call to S2(τ, obtain, sit).
S2(τ, obtain, sit) differs from U .Issue(sit) in that every call to U .Sign:

U .Sign(ipk′k+1, ((ceq(k+1,j), oeq(k+1,j))j∈Ek+1
, (cj , oj)j /∈Rk+1∪Ek+1

,

cusk, ousk), ((ak+1,j)
nk+1

j=1 , usk, rhk+1)) ,

is replaced by the corresponding call to Siss:

Siss(spars, τ ipk′k+1, ((ak+1,j)j∈Rk+1
, rhk+1), ((ceq(k+1,j))j∈Ek+1

, (cj)j /∈Rk+1∪Ek+1
, cusk)) .

That is, in the above games all private inputs to the signature scheme are discarded and the
public inputs are passed on to the simulator.

Game 2: This game relies on the privacy property of the revocation scheme (Definition 4.13)
to simulate the revocation using random revocation handles instead of the real values.
The oracle Ouser is updated such that the tuples in list C, contains an additional value revi;
and the simulator S2 is updated such that it does not take rhi and RIi as input:

S2
(
τ, present, usk∗U , scope, (ipki, (ai,j)

ni
j=1, Ri)

k
i=1, E,M

)
S2
(
τ, obtain, usk∗U , scope, (ipki, (ai,j)

ni
j=1, Ri)

k
i=1, E,M, rh

)

50 6. Security of the Generic Construction

Whenever S2 is computing a commitment and revocation token for some rh in AuxPresent, a
commitment and revocation token for a random valid revocation attribute rhr are computed.

In this game revi is the code of an algorithm that on input RIi outputs a bit indicating
whether the credential is to be considered revoked. We let revi contain the value rhi inside and
on input RIi it computes a commitment to rhi and executes rt←$ RevTokenGen(a, c, o,RI, rpk)
and accept/reject ← RevTokenVf(rt, c,RI, rpk); and outputs 1 if the credential is to be con-
sidered revoked.

Game 3: In this game S2 is updated such that it only takes the revealed attributes (ai,j)j∈Ri as
input and whenever a commitment on a private value has to be computed, it is computed
as Com(0κ).

This game hop follows from the hiding property of the commitment scheme. Note that Siss
cannot extract the committed values, and therefor has to be able to simulate without knowl-
edge of the committed values, therefore Siss can still simulate regardless of the commitments
being computed as Com(0κ).

Game 4: This game relies on the unlinkability of the underlying pseudonym system (Defini-
tion 4.17) and the hiding property of the commitment scheme. The pseudonyms are simu-
lated using random user secret keys, and keeping a list of these random user secret keys to
be able to present the same pseudonym for the same user and the same scope.

The oracle Ouser is updated to hold a initially empty list P and a counter ctr initially set to
ctr = 0. In both present and in obtain, if scope 6= ε and (U, scope, p) 6∈ P then Ouser sets
ctr ← ctr + 1, p ← ctr, and adds (U, scope, p) to P . It then gives S2 p as additional input,
and let it keep state:

(stS,nym, pt)←$ S2
(
stS, τ, present, usk∗U , scope, p, (ipki, (ai,j)j∈Ri)

k
i=1, E,M

)
(stS,nym, pit)←$ S2

(
stS, τ, obtain, usk∗U , scope, p, (ipki, (ai,j)j∈Ri)

k
i=1, E,M, rh

)
S2 is updated such that stS contains an initially empty list L, and such that whenever
scope 6= ε it it is checked whether there exists an entry (p, scope, usk′) ∈ L. If this is the case,
usk = usk′. Otherwise, usk ←$ UKGen(sparg) and (p, scope, usk) is added to L. Finally, the
pseudonym and proof to be used is computed by committing to usk (cusk, ousk)←$ Com(usk)
and computing (nym, π) ←$ NymPres(usk, cusk, ousk, scope). If scope = ε then (cusk, ousk) ←$

Com(0κ) is used.

Game 5: The oracle Ouser is updated to initially setting state information stS = τ and the list
HP is dropped. HP is only used to store information not used and not relevant for these
games.

S2 is updated such that it is input τ as part of its state and such that it does not take usk∗U
as input as this value is not used anymore, since it is simulated.

(stS,nym, pt)←$ S2
(
stS, present, scope, p, (ipki, (ai,j)j∈Ri)

k
i=1, E,M

)
(stS,nym, pit)←$ S2

(
stS, obtain, scope, p, (ipki, (ai,j)j∈Ri)

k
i=1, E,M, rh

)
If we let F = Ouser as defined above with revi as defined in Game 2; with S1 as defined in
Game 1a; and with S2 as defined above this game is the game of experiment PrivacyA(1κ, nU)
for b = 1, i.e., the case where the adversary is interacting with F and the simulations. ut

Theorem 6.5 (Simulatable Weak Privacy). The PABC-system resulting from the generic
construction presented in § 5 is weakly private in the sense of Definition 3.3, if the underlying
commitment scheme is hiding, the PABS-scheme is weak user private according to Definition 4.9,
the revocation scheme is private according to Definition 4.13, and the pseudonym system is
unlinkable according to Definition 4.17.

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 51

Proof. This proof follows analogously to the proof of Theorem 6.4 as a series of games, however,
as all the games except for Game 1b are identical in these two proofs, we only include Game 1b
here. The difference between the two versions of Game 1b, is that in Theorem 6.4 the simulator
of the PABS-scheme can simulate without knowing if two presentations are done over the same
or two different signatures, however, the simulator of a weak user private PABS-scheme needs the
knowledge of whether a presentation of a signature is done over a previous presented signature.
the simulator needs this to be able to simulate the linkability of these two presentations. This is
done in the same way as in Game 4, the step introducing the simulation of the pseudonym, with
introducing a list of anonymous numbers, so the simulator gets the same number each time it
has to do a presentation of the same signature.

Game 0-1a: These are identical of the proof of Theorem 6.4.
Game 1b: This game calls a simulator, using the simulated system parameters to be able to

generate simulated presentation tokens of the PABS-scheme.
In this game the oracle Ouser is updated such that the signatures behind the presentations
are simulated by the simulator which is given an index to keep track of whether it has
simulated presentations over this signature before.
The oracle Ouser is updated to hold a initially empty list L and a counter ctrcid initially
set to ctrcid = 0. In both present and in obtain, it first checks if a tuple (cidi, pcidi) in L
exists. If not, it sets ctrcid ← ctrcid + 1, pcid ← ctrcid, and adds a tuple (cid, pcid) to L. It
then gives S2 {pcidi}ki=1 as additional input, and let it keep state such that:
• instead of executing

Present
(
usk∗U , scope, (ipki,RIi, credi = (sigi, rhi), (ai,j)

ni
j=1, Ri)

k
i=1, E,M

)
it executes

S2
(
τ, present, usk∗U , scope, (ipki,RIi, cred′i = (ε, rhi), (ai,j)

ni
j=1, Ri)

k
i=1, E,M

)
;

• and instead of

ITGen
(
usk∗U , scope, rh, (ipki,RIi, credi(sigi, rhi), (ai,j)

ni
j=1, Ri, pcidi)

k+1
i=1 , E,M

)
it executes

S2
(
τ, obtain, usk∗U , scope, (ipki,RIi, credi(ε, rhi), (ai,j)

ni
j=1, Ri, pcidi)

k
i=1, E,M, rh

)
.

S2 works exactly like Present and ITGen except for the following change: For both algorithms,
AuxPresent (Fig 11) is modified such that:

SignTokenGen(ipk′i, sigi, ((ai,j)
ni
j=1, usk, rhi), Ri, ((ceq(i,j), oeq(i,j))j∈Ei , cusk, ousk, crh,i, orh,i), M̂

′
)

is replaced by:

Spres(ipk′, τ, pcidi , (ai,j)j∈Ri , ((ceq(i,j))j∈Ei , cusk, crh,i), M̂
′
)

from Definition 4.9. Note that also here the difference from the proof of Theorem 6.4 is the
value pcid. Therefore under presentation and issuer token generation all private inputs are
discarded and only the public inputs are passed on to the simulator Spres, with an index to
make simulation of linkability possible..

Game1c-5: Follows trivially along the line of the same games of the proof of Theorem 6.4.

The claim follows. ut

Chapter 7

Secure Instantiations of
Building Blocks
We next present secure instantiation of the building blocks defined in § 4. Our constructions
are strongly based on existing schemes. More precisely, we use Pedersen commitments over the
integers [Ped91,DF02]. Our signature scheme is based on CL-signatures, cf. § 2.2.3 and [CL02],
and our revocation scheme is a variant of that introduced by Nakanishi et al. [NFHF09]. Finally,
the used pseudonym system was first used by Identity Mixer [Tea10].

On a very high level, these existing schemes are all equipped with zero-knowledge proofs to
obtain the required extractability properties, which are achieved following the “encryption to
the sky” paradigm using Paillier encryptions, cf. § 2.2.2.

7.1 Global System Parameter Generation

On input 1κ, SPGeng behaves as specified next:

• It specifies ` arbitrarily as in § 4.1,
• chooses an arbitrary integer L, and
• chooses security parameters κc ≥ κ specifying the soundness of all involved proofs as well

as κv ≥ κ controlling the statistical zero-knowledge property of all protocols.
• The algorithm further chooses a Paillier encryption key (esk, epk) ←$ EncKGen(1κ) as de-

scribed in § 2.2.2.
• It sets spar′g = (epk, κc, κv) and
• computes sparc ←$ SPGenc(1

κ, `, spar′c) and ck←$ ComKGen(sparc).

SPGeng outputs:
sparg = (1κ, `, `, sparc, ck, L, spar′g) .

7.2 A Commitment Scheme based on Pedersen Commitments

We next describe a commitment scheme that satisfies our requirements. The scheme is a direct
combination of the following two components. First, the commitment scheme for message space
Zq, q ∈ P, by Pedersen [Ped91] and its generalization to an integer commitment scheme by
Damg̊ard and Fujisaki [DF02]. Second, the zero-knowledge proofs of knowledge by Fujisaki et
al. [FO97,DF02].

7.2.1 System Parameter Generation

On input (1κ, `, spar′g), SPGenc outputs

sparc = (1κ, `, ε) .

7.2.2 Commitment Key Generation

On input sparc, ComKGen behaves as follows:

• It chooses a safe RSA modulus n of length κn, and
• h←$ Z∗n as well as g ←$ 〈h〉

The algorithm outputs
ck = (n, g, h) .

52

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 53

7.2.3 Committing to Messages

To commit to a message m ∈ ±{0, 1}λ, this algorithm computes o←$ [0, n] and outputs

(c, o) = (gmho, o) .

7.2.4 Commitment Opening Verification

ComOpenVf outputs accept, if and only if c = gmho.

7.2.5 Commitment Opening Proof

On input ck, sparc, c,m, o, ComPf behaves as follows:

• It first computes co = Enc(o) and cm = Enc(m). Let ro and rm denote the random coins
used in the encryptions.

• Next, it computes the following non-interactive zero-knowledge proof:

π′ ←$ ZKPFS

[
(o, µ, ρo, ρm) : c = gµho ∧ co = Enc(o; ρo) ∧
cm = Enc(µ; ρm)

]
(c, co, cm, ck, sparc) ,

where the used encryption key was extracted from the global system parameters contained
in sparc.

The algorithm outputs:

π = (co, cm, π
′) .

7.2.6 Commitment Proof Verification

ComProofVf outputs accept, if and only if the input has the correct form, and the given proof
verifies correctly.

7.3 A PABS-Scheme Based on CL-Signatures

We now show how to construct a PABS-scheme satisfying the discussed security properties. The
scheme is based on the CL-signature scheme recapitulated in § 2.2.3.

7.3.1 System Parameter Generation

On input sparg, SPGens behaves as follows:

• It specifies AS = ±{0, 1}`m for an arbitrary `m ≤ `,
• and defines spars = ε.

The algorithm outputs:

spars = (sparg,AS, spars) .

7.3.2 Key Generation

This algorithm works similar to the key generation of CL-signatures, cf. § 2.2.3, but additionally
to the key also outputs a proof that it is well-formed.

More precisely, on input spars, IKGen behaves as follows:

• It first computes κn according to [Blu13] for security level κ, and

• then chooses a strong RSA modulus for which p and q have length κn/2.

• The algorithm computes S ←$ QRn, and R1, . . . , RL, Z ←$ 〈S〉 by choosing xi, xz ←$ {0, 1}κn
and setting Ri := Sxi for i = 1, . . . , L, Z := Sxz .

54 7. Secure Instantiations of Building Blocks

User[ipk, (cj , oj)j 6∈R,
#„a] Issuer[isk, ipk, (ai)i∈R, (cj , πj)j 6∈R]

r ∈ [0, n]
caj = Enc(aj) for j 6∈ R
cr = Enc(r)

t =
∏
j 6∈R

R
aj
j S

r

π1 = ZKPFS

[(
(αj , oj , ρaj)j 6∈R, ρ, ρr

)
: t =

∏
j 6∈R

R
αj

j Sρ ∧ cr = Enc(ρ; ρr)∧∧
j 6∈R

(
cj = Com(αj , oj) ∧ caj = Enc(αj ; ρaj) ∧ αj ∈ ±{0, 1}`m

)]
(t, (caj)j 6∈R, cr, ipk)

t, (caj)j 6∈R, cr, π1-
Check that ComProofVf(cj , πj) = accept for j 6∈ R

Check that π1 is correct

v′ ←$ 1‖{0, 1}`v−1

e←$ P ∩ 1‖{0, 1}`e−1

A =

(
Z

t
∏
i∈RR

ai
i S

v′

)1/e

π2 = ZKPFS

[(
ε, ν′

)
: A =

(
Z

t
∏
i∈RR

ai
i S

ν′

)1/ε
]

(A, e, v′), π2�
Check that π2 is correct

Check that Z = AeSv
′∏L

i=1R
ai
i

Check that e ∈ P ∩ 1‖{0, 1}`e−1

Output sig = (e,A, v = v′ + r)

Fig. 14: Issuance of a signature for attributes (a1, . . . , aL). If any of the checks fails, the protocol
aborts.

• Furthermore, a NIZK proof π is computed as follows:

π ←$ ZKPFS

[
(χ1, . . . , χL, χz) :

L∧
i=1

Ri = Sχi ∧ Z = Sχz
]
(R1, . . . , RL, Z, S, n, spars).

The algorithm outputs:

(ipk, isk) = ((R1, . . . , RL, Z, S, n, π), p) .

7.3.3 Key Verification

KeyVf outputs accept, if and only if the proof contained in ipk verifies correctly.

7.3.4 Signature Issuance

Figure 14 describes the Sign protocol for attributes #„a = (a1, . . . , aL). On a high level, the user
first computes a template t for the unrevealed attributes, such that t is consistent with what the
issuer would do in a basic CL-issuance protocol, cf. § 2.2.3. Using t, the parties then essentially
perform an instance of that protocol.

7.3.5 Signature Verification

The correctness of a signature can be verified on input a signature sig = (e,A, v), attributes
#„a = (a1, . . . , aL) and an issuer public key ipk as follows:

SigVf(sig, #„a , ipk) outputs accept if

Z ≡ Ae
L∏
i=1

Raii S
v (mod n) ∧ 2`e−1 < e < 2`e ∧

L∧
i=1

ai ∈ ±{0, 1}`m ,

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 55

and reject otherwise.

7.3.6 Signature Presentation Token Generation

On inputs (ipk, sig, #„a ,R, (cj , oj)j∈C ,M), SignTokenGen behaves as follows:

• In a first step, the user re-randomizes his signature (e,A, v), obtaining a signature (e,A′, v′)
as described in § 2.2.3.
• Next, SignTokenGen encrypts all unrevealed attributes and commitment openings under the

public key specified in spars. That is, it computes:

caj = Enc(aj) ∀j 6∈ R , ce = Enc(e) ,

coj = Enc(oj) ∀j ∈ C , cv′ = Enc(v′) .

Let raj , roj , re, rv′ be the random coins being used in these encryptions.
• SignTokenGen then generates the following signature proof of knowledge:

π′ ←$ ZKPFS

[
((αj , ρaj)j 6∈R, (oi, ρoi)i∈C , ν

′, ρv′ , ε, ρe) :

Z
∏
i∈R

R−aii = A′ε
∏
j 6∈R

R
αj
j S

ν′ ∧
∧
j 6∈R

(
caj = Enc(αj ; ρaj) ∧ αj ∈ ±{0, 1}`m

)
∧

∧
i∈C

(
ci = Com(αi; oi) ∧ coi = Enc(oi; ρoi)

)
∧ ce = Enc(ε; ρe) ∧ cv′ = Enc(ν ′; ρv′) ∧

2`e−1 < ε < 2`e
]
((ai)i∈R, A

′, ce, cv′ , (cj , coj)j∈C , (caj)j 6∈R, spars, ipk,M)

The algorithm outputs:
spt = (A′, ce, cv′ , (caj)j 6∈R, (coj)j∈C , π

′) .

7.3.7 Signature Presentation Token Verification

SignTokenVf outputs accept, if and only if spt has the correct form and the contained proof
verifies correctly, and all revealed attributes are in ±{0, 1}`m .

7.4 A PABS-Scheme Based on Brands’ Signatures

We now show how to construct a PABS-scheme satisfying the discussed security properties. The
scheme is based on the Brands signature scheme from § 2.2.3.

7.4.1 System Parameter Generation

On input sparg, SPGens defines behaves as follows:

• It specifies AS = {0, 1}`m for an arbitrary `m ≤ `,
• and defines spars = ε.

The algorithm outputs:
spars = (sparg,AS, spars) .

7.4.2 Key Generation

On input spars, IKGen behaves as follows:

• It first computes κp according to [Blu13] for security level κ, and
• then chooses a prime p of length κp and a prime q such that q ≥ 2`m and q|p− 1.
• The algorithm picks a random generator g of the unique subgroup of order q in Z∗p, and
• then chooses random values yi ∈R Zq and sets gi = gyi for i = 0, . . . , L.

The algorithm outputs:
(ipk, isk) = ((g, p, q, g0, g1, . . . , gL), y0) .

56 7. Secure Instantiations of Building Blocks

User[ipk, (cj , oj)j 6∈R,
#„a] Issuer[isk, ipk, (ai)i∈R, (cj , πj)j 6∈R]

s←$ Z∗q
v ←$ Zq
b1 ←$ Zq
b2 ←$ Zq
h = (g0

∏L
j=1 g

aj
j)s

t1 = gb10 g
b2

t2 = hb2

t′ =
∏
j /∈R g

aj
j g

v

caj = Enc(aj) for j 6∈ R
cv = Enc(v)

π = ZKPFS

[(
(αj , oj , ρaj)j /∈R, ν, ρv

)
: t′ =

∏
j /∈R

g
αj

j gν ∧ cv = Enc(ν; ρv)∧

∧
j /∈R

(
cj = Com(αj , oj) ∧ caj = Enc(αj ; ρaj)

)]
(t′, (cj , caj)j /∈R, cv, ipk)

t′, π -
Check that ComProofVf(cj , πj) = accept for j 6∈ R

Check that π is correct
w ←$ Zq
a = gw

t = g0t
′∏

j∈R g
aj
j

b = tw

z = ty0

(a, b, z)�
z′ = (z/gv0)s

a′ = t1a

b′ = (z′)b1t2(b/av)s

c′ = H(h, z′, a′, b′) ∈ Zq
c = c′ + b1 mod q

c -
r = cy0 + w mod q

r�
r′ = r + b2 mod q
Output sig = (s, h, z′, c′, r′)

Fig. 15: Issuance of a signature for attributes (a1, . . . , aL). In the zero-knowledge proof the user
acts as the prover. If any of the checks or proofs fails, the protocol aborts.

7.4.3 Key Verification

KeyVf outputs accept, if and only if p ∈ P ∩ 1‖{0, 1}κp−1, q ∈ P, q|(p− 1), q ≥ 2`m , g has order
q and yqi = 1 for all i.

7.4.4 Signature Issuance

Let H be a secure cryptographic hash function with output domain Zq. Figure 15 describes the
Sign protocol for attributes #„a = (a1, . . . , aL)

7.4.5 Signature Verification

The correctness of a signature sig = (s, h, z′, c′, r′) on attributes #„a = (a1, . . . , aL) under an
issuer public key ipk can be verified as follows:

SigVf(sig, #„a , ipk) outputs accept if the following two equations hold:

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 57

h
?
= (g0

L∏
i=1

gaii)s

c′
?
= H(h, z′, gr

′
g−c

′

0 , hr
′
(z′)−c

′
)

and reject otherwise.

7.4.6 Signature Presentation Token Generation

On inputs (ipk, sig, #„a ,R, (cj , oj)j∈C ,M), SignTokenGen behaves as follows:

• In a first step SignTokenGen encrypts all unrevealed attributes and commitment openings
under the public key specified in spars. That is, it computes:

caj = Enc(aj) ∀j 6∈ R ,
coj = Enc(oj) ∀j ∈ C ,
cs = Enc(s) .

Let raj , roj , ra be the random coins being used in these encryptions.
• SignTokenGen then generates the following signature proof of knowledge:

π ←$ ZKPFS

[
((αj , ρaj)j 6∈R, (oi, ρoi)i∈C , σ, ρs) : h =

(
g0
∏
j∈R

gaii
∏
j 6∈R

g
αj
i

)σ
∧

∧
j 6∈R

caj = Enc(αj ; ρaj) ∧
∧
i∈C

(
ci = Com(αi; oi) ∧ coi = Enc(oi; ρoi)

)
∧

cs = Enc(σ; ρs)
]
((ai)i∈R, h, z

′, c′, r′, cs, (cj , coj)j∈C , (caj)j 6∈R, spars, ipk,M)

The algorithm outputs:

spt = (h, z′, c′, r′, cs, (caj)j 6∈R, (coj)j∈C , π) .

7.4.7 Signature Presentation Token Verification

SignTokenVf outputs accept, if and only if spt has the correct form, the proof π contained in the
signature presentation token spt verifies correctly and the following equation holds:

c′
?
= H(h, z′, gr

′
g−c

′

0 , hr
′
(z′)−c

′
)

7.5 A Revocation Scheme Based on the Nakanishi et al. Scheme

In the following we sketch a revocation scheme satisfying the properties defined in § 4.4. The
high level idea is taken from Nakanishi et al. [NFHF09]: the revocation authority signs intervals
of unrevoked attributes, and at presentation time a user shows that his attribute lies in one
of these intervals without revealing which one. For this approach to work we assume that the
attribute space is given by an integer interval as is the case for the scheme presented earlier.
If this is not the case, one first has to define a 1 to 1 mapping from the attribute space to
some integer interval, and then additionally prove that this mapping was done correctly for the
specific attribute.

The following description of the required algorithms is kept at an abstract level. While a
trivial solution especially for the presentation protocol can be realized using standard techniques
to prove partial knowledge of a witness [CDS94], an efficient solution based on pairings follows
directly from the work of Nakanishi et al. [NFHF09].

58 7. Secure Instantiations of Building Blocks

7.5.1 System Parameter Generation

On input sparg, SPGenr behaves as follows:

• It defines RS = ±{0, 1}`m , and
• sets spar′r = (SignGen, Sign, SignVf), where the algorithms define a signature scheme which is

unforgeable under chosen message attacks for a message space containing [−2`m , 2`m] ⊇ RS.
For the trivial solution mentioned before this could, e.g., be instantiated with CL-signatures.

The algorithm outputs:
sparr = (sparg,RS, spar′r) .

7.5.2 Revocation Setup

On input sparr, RKGen behaves as follows:

• It generates a signing/verification key for the specified signature scheme, i.e., it computes
(rsk, rpk)←$ SignGen(1κ).
• It then defines rmin = −2`m and rmax = 2`m , such that for all a ∈ AS(1κ) it holds that
rmin < a < rmax.
• It sets σ0,0 = Sign(rsk, (0, rmin, rmax)) as well as #„r 0 = (rmin, rmax) and RI = (0, {σ0,0}, #„r 0).

The algorithm outputs
(rsk, rpk,RI) .

7.5.3 Attribute Revocation

On input (rsk,RI, a), where RI = (t, {σt,j}tj=0,
#„r) and #„r t = (rt,0, . . . , rt,t+1), Revoke behaves as

follows:

• It first determines j′ such that rt,j′ < a < rt,j′+1, and
• defines

#„r t+1 = (rt+1,0, . . . , rt+1,t+2) = (rt,0, . . . , rt,j′ , a, rt,j′+1, . . . , rt,t+1) .

• For all j = 0, . . . , t+ 1 it then computes

σt+1,j = Sign(rsk, (t+ 1, rt+1,j , rt+1,j+1)) .

The algorithm outputs
RI = (t+ 1, {σt+1,j}t+1

j=0,
#„r t+1) .

7.5.4 Revocation Token Generation

On input (a, c, o,RI, rpk), where RI = (t, {σt,j}tj=0,
#„r), RevTokenGen behaves as follows:

• It computes ca = Enc(a) and co = Enc(o), with random coins ra and ro, respectively.
• It then computes a non-interactive zero-knowledge proof of knowledge for the following

statement:

π′ ←$ ZKPFS

[
(α, o, ι) : c = Com(α, o) ∧ σt,ι = Sign(t, rι, rι+1) ∧

ca = Enc(α, ρα) ∧ co = Enc(o, ρo) ∧ rι < α < rι+1

]
(sparr, c, RI, rpk, co, ca) .

The algorithm outputs
rt = (ca, co, π

′) .

Note that the index ι remains hidden during the presentation, and thus no information
about the attribute is leaked during the proof.

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 59

7.5.5 Revocation Token Verification

The algorithm RevTokenVf outputs accept, if and only if the following is satisfied:

• rt has the correct form,
• all σt,j are valid signatures for 0 ≤ j ≤ t+ 1, and
• the contained proof verifies correctly.

7.6 A Pseudonym Scheme

In the following we describe a realization of a pseudonym extension, satisfying the properties
defined in § 4.5.

7.6.1 System Parameter Generation

Before being able to specify this algorithm, we need to recap the following definition:

Definition 7.1 (DDH Assumption). Let G be a cyclic group of prime order q. The DDH
assumption holds for G, if the following two distributions are computationally indistinguishable:

{(g, gx, gy, gxy)} ∼ {(g, gx, gy, gz)} ,

where g ←$ G and x, y, z ←$ Zq.
On input sparg, SPGenp now behaves as follows:

• It first chooses a group G of prime order q ∈ P ∩ {0, 1}`m , such that the DDH-assumption
holds for G.
• Furthermore, it chooses H←$ Hκ, where Hκ is a family of collision resistant hash functions

for security parameter κ with co-domain G.
• It sets spar′p = (G,H, q).

The algorithm outputs
sparp = (sparg, spar′p) .

7.6.2 User Key Generation

On input sparp, a user secret key is chosen as usk←$ Zq.

7.6.3 Pseudonym Generation

On input (usk, scope), NymGen outputs

nym = (H(scope))usk .

7.6.4 Pseudonym Presentation Generation

On input (usk, c, o, scope), NymPres behaves as follows:

• It first computes nym← NymGen(usk, scope).
• It then computes co = Enc(o) and cusk = Enc(usk). Let the associated random coins be given

by ro and rusk, respectively.
• Next, the algorithm computes the following non-interactive zero-knowledge proof of knowl-

edge:

π′ ←$ ZKPFS

[
(u, o, ρo, ρusk) : nym = H(scope)u ∧ c = Com(u, o) ∧
cusk = Enc(u; ρusk) ∧ co = Enc(o; ρo)

] (
sparp, c, cusk, co, scope,nym

)
.

The algorithm outputs
(nym, π) = (nym, (co, cusk, π

′)) .

7.6.5 Pseudonym Verification

This algorithm outputs accept, if and only if the input has the correct form and the contained
proof verifies correctly.

Chapter 8

Security of Instantiation
8.1 Security Proofs of Commitment Scheme

Lemma 8.1. Under the strong RSA assumption, the commitment scheme described in § 7.2 is
perfectly correct, computationally binding, and statistically hiding according to Definitions 4.1,
4.2, and 4.3.

We omit the proof here and refer to the original work of Pedersen [Ped91] and Fujisaki et
al. [DF02,FO97].

Lemma 8.2. Under the strong RSA assumption and the quadratic residuosity assumption, the
commitment scheme described in § 7.2 is opening extractable according to Definition 4.4 in the
random oracle model.

Proof. We have to show correctness, soundness, zero-knowledge and extractability, cf. Defini-
tions 2.1 and 2.2.

Correctness follows directly from the correctness of the non-interactive zero knowledge proof
in 7.2.

For the zero-knowledge property, the simulator first computes co and cm as encryptions to
0, and then outputs whatever the standard simulator for the Fiat-Shamir heuristic outputs on
input c, co, cm, ck, sparc, cf., e.g., [BPW12]. By the semantic security of the encryption scheme
and the zero-knowledge property of the Fiat-Shamir heuristic, the claim follows.

Soundness follows from the fact that the Fiat-Shamir heuristic is sound for the given relation
in the random oracle model [PS96].

Following the “encryption to the sky” paradigm, extractability can now be seen as follows.
The faked parameters are computed by E1 just as the original ones, except that the decryption
key of Enc is stored in τ , which obviously makes real and faked parameters indistinguishable.
Now, given a commitment c and a proof π generated by the adversary, E2 decrypts co, cm,
obtaining o′ and m′, respectively. Together with the correctness of the encryption scheme,
the soundness property guarantees that the extracted witnesses are the same as those for the
commitment c with overwhelming probability. The claim now follows immediately. ut

8.2 Security Proofs of PABS-Scheme Based on CL Signatures

Lemma 8.3. Assuming that CL-signatures (cf. § 2.2.3) are existentially UF-CMA secure ac-
cording to Definition 2.5, the PABS-scheme described in § 7.3 is signature unforgeable according
to Definition 4.6 in the random oracle model.

Proof. Let Ω denote the probability space as in Definition 4.6. It then holds that:

Pr
[
SignTokenVf(ipk, spt, (ai)i∈R, (cj)j∈C ,M) = accept ∧

(
SigVf(sig, #„a , ipk) = reject ∨

∃k ∈ C : ComOpenVf(ak, ck, ok) = reject ∨
(
((ai)i∈R, (cj)j∈C ,M) /∈ Lspt ∧ #„a /∈ Liss

))
: Ω
]

≤ (i) Pr
[
SignTokenVf(. . .) = accept ∧ SigVf(sig, #„a , ipk) = reject : Ω

]
+

(ii) Pr
[
SignTokenVf(. . .) = accept ∧ ∃k ∈ C : ComOpenVf(ak, ck, ok) = reject : Ω

]
+

(iii) Pr
[
SignTokenVf(. . .) = accept ∧ ((ai)i∈R, (cj)j∈C ,M) /∈ Lspt ∧ #„a /∈ Liss : Ω

]
.

60

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 61

We now show that each of the terms is negligible as a function of the security parameter.

For (i), note that signature presentation tokens are in particular non-interactive zero-
knowledge proofs for (ai)i/∈R with ai ∈ ±{0, 1}`m , 2`e−1 < e < 2`e and v′ such that:

Z
∏
i∈R

R−aii = A′e
∏
j /∈R

R
aj
j S

v′ ,

and thus these values can be extracted from the adversary with overwhelming probability.
Furthermore, SignTokenVf checks that all revealed attributes are elements of ±{0, 1}`m as well.
Together, this guarantees that

Z ≡ A′e
L∏
i=1

Raii S
v′ (mod n) ∧ 2`e−1 < e < 2`e ∧

L∧
i=1

ai ∈ ±{0, 1}`m ,

which is what SignVf tests.

For (ii), note that signature presentation tokens are in particular non-interactive zero-
knowledge proofs for valid openings of (cj)j∈C . Therefore, the adversary only has a negligi-
ble chance of outputting commitments and a valid signature presentation token, although not
knowing the content and openings of at least one commitment.

For (iii), we first modify the game the adversary has to win through a number of game hops,
such that the winning probability of the adversary does not change by more than a negligible
amount. We then show that if the adversary can win the last game of this sequence, then he
can break the UF-CMA property of CL-signatures.

Game 1: This is the original game specified in (iii).
Game 2: In this game, we additionally require that the extracted signature passes SigVf, and

that valid openings of all commitments can be extracted. From (i) and (ii) it follows imme-
diately that the winning probability of the adversary only changes negligibly.

Game 3: Requests to Ouser are now simulated. That is, obtain requests are simply answered
with a cid, and (cid, #„a , ε) is added to Liss. Upon receiving a token request, A′ is cho-
sen randomly in 〈S〉, and cv′ , ce are computed as encryptions to zero. The required non-
interactive zero-knowledge proof is then simulated programming the random oracle. By the
CPA-security of the encryption scheme and the zero-knowledge property of the deployed
proof, this game is indistinguishable from the previous game for every adversary.

Game 4: The proof contained in the issuer public key is now simulated. The indistinguishability
follows from the zero-knowledge property of the deployed proof.

We now sketch how an adversary A winning this game can be used to construct an adversary
B that forges CL-signatures. Given a public CL-key as input, B fakes the required proof and
forwards it as input to A. Calls to Ouser are answered by B as described in Game 3. Furthermore,
for calls to Oissuer, B first extracts the values inside the commitments, and requests a signature
from the CL-signing oracle. Using this signature, it then runs the issuance protocol with A. All
inputs provided to the adversary now have exactly the same distribution as in Game 4.

When A now outputs a presentation token, B extracts the contained signature and attributes,
and outputs this as a CL-forgery. It is easy to see that B wins whenever A wins, which can happen
with at most negligible probability under the assumed UF-CMA security of CL-signatures.

Now, the claim of the theorem follows immediately from (i)− (iii). ut

Corollary 8.4. Under the Strong RSA assumption (cf. Definition 2.6), the PABS-scheme de-
scribed in § 7.3 is signature unforgeable according to Definition 4.6.

62 8. Security of Instantiation

Proof. This follows directly from Lemma 8.3 and the fact that the CL-signature scheme is
existentially UF-CMA under the Strong RSA assumption [CL02].

Lemma 8.5. The PABS-scheme described in § 7.3 satisfies key correctness according to Defini-
tion 4.7 in the random oracle model.

Proof. This follows immediately from the soundness of the Fiat-Shamir heuristic [PS96] for the
proof contained in ipk. ut

Lemma 8.6. Assuming that the underlying commitment scheme is hiding, the PABS-scheme
described in § 7.3 is user private according to Definition 4.8.

Proof. We prove this theorem through a sequence of games played with the issuance adversary
Aiss = A1,iss,A2,iss and presentation adversary Apres = A1,pres,A2,pres. We first describe the
simulators Sparams,Siss and Spres.

Sparams The parameters are computed just as in the original SPGens, and the trapdoor is just
the empty string.

Siss Acting as the user, the simulator computes all encryptions as encryptions to 0, and com-
putes t as Sr for r ←$ [0, n]. The simulator then uses the standard simulator for the Fiat-
Shamir heuristic to produce a valid π1, by programming the random oracle accordingly.
Apart from that, it follows the protocol.

Spres The simulator computes A′ ←$ QRn, caj = Enc(0) for all j 6∈ R, coj = Enc(0) for all j ∈ C,
ce = Enc(0), cv′ = Enc(0) and sets π′ to simulates π′ by programming the random oracle
accordingly. Finally the simulator outputs spt = (A′, ce, cv′ , (caj)j 6∈R, (coj)j∈C , π

′).

Note that the first condition of Definition 4.8 is trivially satisfied as the simulated parameters
are just the same as the real ones.

BlindIssuance. From KeyVf(ipk) = accept we get that t unconditionally hides the unrevealed
attributes, in both the real and the simulated world. Furthermore, by the IND-CPA security
of the used encryption scheme, none of the computed ciphertexts leaks information about the
contained values to the adversary in either world. Now, from the zero-knowledge property of the
used non-interactive zero-knowledge proof of knowledge, we can infer that replacing the honest
user by Siss cannot be detected by the adversary.

PtPrivacy. Similar to above, the distributions of signature presentation tokens computed
in the real and the simulated world are computationally indistinguishable by the IND-CPA
security of the used encryption scheme, the zero-knowledge property of the used non-interactive
zero-knowledge proof of knowledge, and the fact that A′ is statistically close to the uniform in
the real world because of the well-formedness of ipk. ut

8.3 Security Proofs of PABS-Scheme Based on Brands’ Signatures

Lemma 8.7. Assuming that UProve-signatures (cf. § 2.2.3) are existentially UF-CMA secure
according to Definition 2.5, the PABS-scheme described in § 7.4 is signature unforgeable accord-
ing to Definition 4.6 in the random oracle model.

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 63

Proof. We proceed similar to the proof of Lemma 8.3, and first observe that, for Ω denoting
the probability space as in Definition 4.6, we have that:

Pr
[
SignTokenVf(ipk, spt, (ai)i∈R, (cj)j∈C ,M) = accept ∧

(
SigVf(sig, #„a , ipk) = reject ∨

∃k ∈ C : ComOpenVf(ak, ck, ok) = reject ∨
(
((ai)i∈R, (cj)j∈C ,M) /∈ Lspt ∧ #„a /∈ Liss

))
: Ω
]

≤ (i) Pr
[
SignTokenVf(. . .) = accept ∧ SigVf(sig, #„a , ipk) = reject : Ω

]
+

(ii) Pr
[
SignTokenVf(. . .) = accept ∧ ∃k ∈ C : ComOpenVf(ak, ck, ok) = reject : Ω

]
+

(iii) Pr
[
SignTokenVf(. . .) = accept ∧ ((ai)i∈R, (cj)j∈C ,M) /∈ Lspt ∧ #„a /∈ Liss : Ω

]
.

We now show that each of the terms is negligible as a function of the security parameter.

For (i), note that signature presentation tokens are in particular non-interactive zero-
knowledge proofs for (ai)i/∈R with ai ∈ Zq and s ∈ Zq such that:

h =

(
g0

L∏
i=1

gaii

)s
,

and thus these values can be extracted from the adversary with overwhelming probability.
Furthermore, SignTokenVf checks that c′ = H(h, z′, gr

′
g−c

′

0 , hr
′
(z′)−c

′
). Together this is exactly

what SignVf tests for.

For (ii), note that signature presentation tokens are in particular non-interactive zero-
knowledge proofs for valid openings of (cj)j∈C . Therefore, the adversary only has a negligi-
ble chance of outputting commitments and a valid signature presentation token, although not
knowing the content and openings of at least one commitment.

For (iii), we first modify the game the adversary has to win through a number of game hops,
such that the winning probability of the adversary does not change by more than a negligible
amount. We then show that if the adversary can win the last game of this sequence, then he
can break the UF-CMA property of UProve-signatures which is hard by assumption.

Game 1: This is the original game specified in (iii).
Game 2: In this game, we additionally require that the extracted signature passes SigVf, and

that valid openings of all commitments can be extracted. From (i) and (ii) it follows imme-
diately that the winning probability of the adversary only changes negligibly.

Game 3: Requests to Ouser are now simulated. That is, obtain requests are simply answered
with a cid, and (cid, #„a , ε) is added to Liss. Upon receiving the first token request for some
cid, c′, r′, z′ are chosen uniformly at random in their domains, h is computed honestly,
a′ = hr

′
(z′)−c

′
and b′ = gr

′
g−c

′

0 , and calls to H on input (h, z′, a′, b′) are not forwarded to the
external oracle any more, but answered with c′. In subsequent presentation requests for the
same cid, those values are re-used. All ciphertexts are computed as encryptions to zero. The
required non-interactive zero-knowledge proof is then simulated programming the random
oracle. By the CPA-security of the encryption scheme, the zero-knowledge property of the
deployed proof, and the fact that the internal change of H will cause a collision with the
real oracle for H only with negligible probability, this game is indistinguishable from the
previous game for every adversary.

We now sketch how an adversary A winning this game can be used to construct an adver-
sary B that forges UProve-signatures. Given a public UProve-key as input, B forwards it to A

64 8. Security of Instantiation

together with (self-chosen) system parameters. Calls to Ouser are treated as described in Game
3. Furthermore, for calls to Oissuer, B first extracts the values inside the commitments, sends
them to the signing oracle, and then acts as a forwarder for the remaining messages of the
protocol.

When A now outputs a presentation token, B extracts the contained s and the attributes
(ai)

L
i=1 and outputs the message (ai)

L
i=1 and the signature (s, h, z′, c′, r′). It is easy to see that

B wins whenever A wins, which can only happen with negligible probability assuming that
UProve-signatures are weakly UF-CMA.

Now, the claim of the theorem follows immediately from (i)− (iii). ut

Lemma 8.8. The PABS-scheme described in § 7.4 satisfies key correctness according to Defini-
tion 4.7.

Proof. It is easy to see that the scheme is even perfectly key correct, i.e., the required negligibly
function is equal to 0, as the subgroup of g and all gi is unique, and thus there exist all required
discrete logarithms. All the other properties of ipk follow trivially. ut

Lemma 8.9. Assuming that the underlying commitment scheme is hiding, the PABS-scheme
described in § 7.4 is weakly user private according to Definition 4.9.

Proof. We next describe the required simulators Sparams,Siss and Spres.

Sparams The parameters are computed just as in the original SPGens, and the trapdoor is just
the empty string.

Siss Acting as the user, the simulator computes all encryptions as encryptions to 0, and com-
putes t′ as gv for v ←$ Zq. The simulator then uses the standard simulator for the Fiat-Shamir
heuristic to produce a valid π, by programming the random oracle accordingly. Upon re-
ceiving the tuple (a, b, z), the simulator sends to the adversary a randomly chosen element
c ∈ Zq.

Spres The simulator computes caj = Enc(0) for all j 6∈ R, coj = Enc(0) for all j ∈ C, and
cs = Enc(0). The simulator then checks whether an entry (idsig, z

′, c′, r′, h) ∈ L exists, where
L is an initially empty list, and idsig is the pointer to the signature for which a presentation is
to be simulated. If not, it chooses r′, c′, z′, h uniformly at random in their respective domains,
and programs H such that c′ = H(h, z′, gr

′
g−c

′

0 , hr
′
(z′)−c

′
), and adds (idsig, z

′, c′, r′, h) to L.
Finally, the simulator fakes the proof π by programming the random oracle accordingly, and
outputs spt = (h, z′, c′, r′, cs, (caj)j 6∈R, (coj)j∈C , π).

We now sketch why the given simulators satisfy the definition. The details of the proof are
straightforward and hence omitted.

BlindIssuance. From KeyVf(ipk) = accept we get that t′ unconditionally hides the unrevealed
attributes, in both the real and the simulated world. Furthermore, by the IND-CPA security
of the used encryption scheme, none of the computed ciphertexts leaks information about the
contained values to the adversary in either world. The user’s second message c is uniformly
random in both worlds. Now, from the zero-knowledge property of the used non-interactive
zero-knowledge proof of knowledge, we can infer that replacing the honest user by Siss cannot
be detected by the adversary.

PtPrivacy. The values h, z′, c′, r′ are constant for all presentation tokens derived from the
same signature in both, the real and the ideal world. Apart from that, the distributions of the
ciphertexts are indistinguishable by the IND-CPA security of the used encryption scheme, and
the proofs contained in spt are indistinguishable by the zero-knowledge property of the used
non-interactive zero-knowledge proofs. ut

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 65

8.4 Security Proofs of Revocation Scheme

Lemma 8.10. The revocation scheme described in § 7.5 is correct according to Definition 4.11.

Proof. Let RI = (t, {σt,j}tj=0,
#„r t), and let the user want to show that some unrevoked a has

not yet been revoked. Then by construction there exists a j such that rt,j < a < rt,j+1, as #„r t
only contains revoked attributes and rmin, rmax. Thus, the user can construct the required non-
interactive zero-knowledge proof of knowledge. Correctness now follows from the correctness of
this proof. ut

Lemma 8.11. Assuming that the deployed signature scheme is strongly unforgeable under cho-
sen message attacks, then the revocation scheme described in § 7.5 is sound according to Defi-
nition 4.12 in the random oracle model.

Proof. We prove the lemma by showing that a prover can only convince the verifier with negli-
gible probability for each of the three given winning conditions.

Case a By construction, a revocation token rt is a zero-knowledge proof of knowledge of (α, o)
such that c = Com(α, o). It thus follows from the soundness of the deployed proof that
RevTokenVf(rt, c,RIA, rpk) = accept ∧ ComOpenVf(c, a, o) = reject can only happen with
negligible probability.

Case b Assume that RevTokenVf(rt, c,RIA, rpk) = accept ∧ @ (RIA, epoch, a′) ∈ L. That is, the
adversary outputs (RIA, rt, c) such that the verifier accepts although the given revocation
information was never generated by the revocation authority. Then the following algorithm
D can be used to break the UF-CMA property of the underlying signature scheme. On input
a signature verification key rpk, D behaves as follows:
• It computes (sparr, τr)←$ Er1(1

κ, λ).
• It requests a signature σ0,0 on message (0,−2`m , 2`m), and defines the initial revocation

information as RI0 = (0, {σ0,0}, (−2`m , 2`m)).
• It then calls A on inputs (rpk,RI0, sparr).
• For every call (revoke, a) to Orevoke, D computes the updated revocation information

by requesting the required signatures from the signing oracle, thereby storing all tuples
(t, rj , rj+1, σt,j).
• When A outputs (RIA, rt, c) where RIA = (t, {σt,j}tj=0,

#„r) and all signatures verify
correctly, D searches for a signature σt,k for which no tuple (t, rk, rk+1, σt,k) has been
recorded, and outputs message (t, rk, rk+1) together with the signature σt,k. If no such
tuple exists or some signature does not verify, D outputs ⊥.

It is easy to see that D does not output ⊥ with more than negligible probability if A succeeds
with more than negligible probability. Furthermore, one can see that D breaks the strong
UF-CMA property of the signature scheme whenever it does not output ⊥.

Case c Assume that RevTokenVf(rt, c,RIA, rpk) = accept ∧ (∃ (RIA, epoch, a′), (RI′, epoch′, a) ∈
L : epoch′ ≤ epoch). Then, by construction of the revocation information, we have that a
is contained in #„r epoch. Now, as rt is in particular a proof that a lies between two subsequent
entries of #„r epoch, this situation can only happen with negligible probability because of the
soundness of the deployed zero-knowledge proof of knowledge.

The claim now follows immediately. ut

Lemma 8.12. The revocation scheme described in § 7.5 is private according to Definition 4.13,
if the used encryption scheme is IND-CPA secure and the commitment scheme is hiding.

Proof. As revocation tokens are zero-knowledge, they do not leak any information about the
attribute, and the claim follows immediately. ut

66 8. Security of Instantiation

8.5 Security Proofs of Pseudonym Scheme

Lemma 8.13. The pseudonym system described in § 7.6 is correct according to Definition 4.14.

Proof. It is easy to see that Pr[nym 6= NymGen(usk, scope) : Ω] and Pr[NymVf(sparp, c, o, scope) :
Ω = reject] are both negligible, where Ω denotes the probability space from Definition 4.14.
Indeed, the former probability is 0, as NymPres internally executes NymGen to obtain nym. The
second probability is negligible by the correctness of the used non-interactive zero-knowledge
proof of knowledge. The claim of the lemma now follows immediately. ut

Lemma 8.14. The pseudonym system described in § 7.6 is key extractable according to Defini-
tion 4.15 in the random oracle model.

Proof. We have to show correctness, soundness and extractability, cf. Definition 2.2.

Correctness follows directly from the correctness of the Σ-protocol underlying the non-
interactive zero-knowledge proof of knowledge, and soundness follows from the fact that the
Fiat-Shamir heuristic is sound for the given relation in the random oracle model [PS96].

Finally, extractability is shown similar to the proof of Lemma 8.2. Again, the faked param-
eters are computed by E1 just as the original ones, except that the decryption key of Enc is
stored in τ . Now, given a c, scope,nym and π generated by the adversary, E2 decrypts co, cusk,
obtaining o′ and usk′, respectively. Together with the correctness of the encryption scheme, the
soundness property guarantees that the extracted witnesses are the same as those for c and nym
with overwhelming probability. The claim now follows immediately. ut

Lemma 8.15. The pseudonym system described in § 7.6 is collision resistant according to Def-
inition 4.16.

Proof. We first note that because of G being a group of prime order q, every element different
from 1 has order q as well.

Assume the adversary outputs scope such that H(scope) 6= 1, but H(scope)usk1 = H(scope)usk2 .
We then get that H(scope)usk1−usk2 = 1, and thus usk1 = usk2. On the other hand, if H(scope) = 1
with more than negligible probability, the adversary broke the preimage resistance of the hash
function, contradicting the security assumptions on H. ut

Lemma 8.16. Under the DDH assumption for G and the quadratic residuosity assumption, the
pseudonym system described in § 7.6 is unlinkable according to Definition 4.17 in the random
oracle model.

Proof. We define a series of games, where each game is indistinguishable from the previous one.

Game 0: This is the original experiment as described in Figure 10.

Game 1: For this game, in O0 and O1, we replace all encryptions in NymPres by encryptions to
0, and simulate all the non-interactive zero-knowledge proofs using the standard simulator
for the underlying Σ-protocols and programming the random oracle accordingly.

Using a hybrid argument, it is easy to see that the two games are indistinguishable by the
zero-knowledge property of the deployed proof.

Game 2: Instead of computing c∗ as a commitment to uskb, in this game we set (c∗, o∗) ←$

Com(0). Also, all commitments computed by O0 and O1 are computed as commitments to
0.

Again using a hybrid argument, one can see that this experiment is indistinguishable from
Game 1 by the hiding property of the commitment scheme.

ABC4Trust – D3.1 Part I – Scientific Comparison of ABC Protocols 67

Game 3: Instead of computing nym∗ as honestly, we compute it using a fresh and random usk∗

instead.
Assume that there exists an algorithm D that can distinguish Games 2 and 3 with more than
negligible probability. We then describe an algorithm D′ breaking the DDH-assumption in
G, leading to a contradiction. Without loss of generality, we therefore assume that every call
to a user oracle Oi is preceded by a call to the random oracle for the same scope, and that
the random oracle is queried at most once for the each input.
On input (g, gx, gy, gz) where either z = xy or z is random, D′ now behaves as follows, where
q is a polynomial upper bound on the number of queries to the random oracle D does:
• In general, every call to the random oracle for scope is answered by grscope , where rscope ←$

Zq, and the oracle stores (scope, rscope). However, D′ further randomly chooses two queries
to the random oracle for some scope′ and scope′′ which are answered with g and gy,
respectively.
• All queries to O1−b are answered for an honestly computed pseudonym nym for some

fixed and random usk1−b.
• The pseudonyms forOb are computed as follows: if the given scope 6= scope′, the simulated

user oracle sets nymscope = (gx)rscope . For scope′, the pseudonym is set to gx.
• The challenge pseudonym nym∗ is defined as gz if scope∗ = scope′′.
• If scope′ was never sent to Ob, of if scope∗ 6= scope′′, D aborts and outputs a random bit.

Otherwise, D′ outputs 0 if D guesses the challenge bit correctly, and 1 otherwise.
It is easy to see that D′ perfectly simulates the experiment of Game 2 if its input was a
DDH-triple, and that of Game 3 if this was not the case. Thus, if the success probability of
D was significantly different for these two games, then D′ would break the DDH-assumption.

The claim of the lemma now follows immediately, as nym∗, c∗ and π∗nym are independent of the
challenge bit b. ut

Chapter 9

Conclusion
We provided security definitions, a modular construction, and secure instantiations of a privacy-
enhancing attribute-based credential system. Our framework encompasses a rich feature set
including multi-attribute credentials, multi-credential presentations, key binding, pseudonyms,
attribute equality proofs, revocation, and advanced credential issuance with carried-over at-
tributes. Prior to our work, most of these features found provably secure instantiations in
isolation, but their combination into a bigger PABC system was never proved secure, nor was it
clear which security notions such a combination should try to achieve.

Even though we think that our feature set is rich enough to cover a wide range of use cases
(cf. § 1.2), there are more features that can be added to our framework. Among the features
identified by the ABC4Trust project [CDL+13], this includes inspection, where presentation
tokens can be de-anonymized by trusted inspectors; verifier-driven revocation, where verifiers
can exclude certain credentials based on local blacklists; and attribute predicates, allowing to
prove for example greater-than relations between attributes. Adding delegation would probably
require a major overhaul of the framework.

68

References
ABC. ABC4Trust – Attribute-based Credentials for Trust. EU FP7 Project. http://www.abc4trust.eu.

BCC+09. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and H. Shacham. Randomizable
Proofs and Delegatable Anonymous Credentials. In CRYPTO 09, volume 5677 of LNCS, pages 108–
125. Springer, 2009.

BCKL08. M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. P-Signatures and Noninteractive Anony-
mous Credentials. In R. Canetti, editor, TCC 08, volume 4948 of LNCS, pages 356–374. Springer,
2008.

BG92. M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. In E. F. Brickell, editor, CRYPTO
92, volume 740 of LNCS, pages 390–420. Springer, 1992.

BL13a. F. Baldimtsi and A. Lysyanskaya. Anonymous Credentials Light. In ACM CCS 13, pages 1087–1098.
ACM, 2013.

BL13b. F. Baldimtsi and A. Lysyanskaya. On the Security of One-Witness Blind Signature Schemes. In Kazue
Sako and Palash Sarkar, editors, ASIACRYPT 13, volume 8270 of LNCS, pages 82–99. Springer, 2013.

Blu13. BlueKrypt. Keylength – Cryptographic Key Length Recommendation, September 2013. http://www.
keylength.com/.

Bou00. F. Boudot. Efficient Proofs that a Committed Number Lies in an Interval. In B. Preneel, editor,
EUROCRYPT 00, volume 1807 of LNCS, pages 431–444. Springer, 2000.

BP97. N. Barić and B. Pfitzmann. Collision-Free Accumulators and Fail-Stop Signature Schemes Without
Trees. In W. Fumy, editor, EUROCRYPT 97, volume 1233 of LNCS, pages 480–494. Springer, 1997.

BPW12. D. Bernhard, O. Pereira, and B. Warinschi. How Not to Prove Yourself: Pitfalls of the Fiat-Shamir
Heuristic and Applications to Helios. In X. Wang and K. Sako, editors, ASIACRYPT 12, volume 7658
of LNCS, pages 626–643. Springer, 2012.

Bra93. S. Brands. An Efficient Off-line Electronic Cash System Based On The Representation Problem.
Technical report, 1993.

Bra97. S. Brands. Rapid Demonstration of Linear Relations Connected by Boolean Operators. In W. Fumy,
editor, EUROCRYPT 97, volume 1233 of LNCS, pages 318–333. Springer, 1997.

Bra99. S. Brands. Rethinking Public Key Infrastructure and Digital Certificates – Building in Privacy. PhD
thesis, Eindhoven Institute of Technology, 1999.

CDL+13. J. Camenisch, M. Dubovitskaya, A. Lehmann, G. Neven, C. Paquin, and F.-S. Preiss. Concepts and
Languages for Privacy-Preserving Attribute-Based Authentication. In S. Fischer-Hübner, E. de Leeuw,
and C. Mitchell, editors, IDMAN 13, volume 396 of IFIP Advances in Information and Communication
Technology, pages 34–52. Springer, 2013.

CDS94. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of Partial Knowledge and Simplified Design of
Witness Hiding Protocols. In Y. Desmedt, editor, CRYPTO 94, volume 839 of LNCS, pages 174–187.
Springer, 1994.

CFT98. A. Chan, Y. Frankel, and Y. Tsiounis. Easy Come - Easy Go Divisible Cash. In K. Nyberg, editor,
EUROCRYPT 98, volume 1403 of LNCS, pages 561–575. Springer, 1998.

CG08. J. Camenisch and T. Groß. Efficient Attributes for Anonymous Credentials. In P. Ning, P. F. Syverson,
and S. Jha, editors, ACM CCS 08, pages 345–356. ACM, 2008.

CH02. J. Camenisch and E. Van Herreweghen. Design and Implementation of the idemix Anonymous Cre-
dential System. In V. Atluri, editor, ACM CCS 02, pages 21–30. ACM, 2002.

Cha81. D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Commun. ACM,
24(2):84–88, 1981.

Cha85. D. Chaum. Security Without Identification: Transaction Systems to Make Big Brother Obsolete.
Commun. ACM, 28(10):1030–1044, 1985.

Cha08. M. Chase. Efficient Non-Interactive Zero-Knowledge Proofs for Privacy Applications. PhD thesis,
Brown University, Providence, Rhode Island, United States, 2008.

CKY09. J. Camenisch, A. Kiayias, and M. Yung. On the Portability of Generalized Schnorr Proofs. In A. Joux,
editor, EUROCRYPT 09, volume 5479 of LNCS, pages 425–442. Springer, 2009.

CL01. J. Camenisch and A. Lysyanskaya. An Efficient System for Non-transferable Anonymous Credentials
with Optional Anonymity Revocation. In B. Pfitzmann, editor, EUROCRYPT 01, volume 2045 of
LNCS, pages 93–118. Springer, 2001.

CL02. J. Camenisch and A. Lysyanskaya. A Signature Scheme with Efficient Protocols. In S. Cimato,
C. Galdi, and G. Persiano, editors, SCN 02, volume 2576 of LNCS, pages 268–289. Springer, 2002.

CL04. J. Camenisch and A. Lysyanskaya. Signature Schemes and Anonymous Credentials from Bilinear
Maps. In M. K. Franklin, editor, CRYPTO 04, volume 3152 of LNCS, pages 56–72. Springer, 2004.

CM99. J. Camenisch and M. Michels. Proving in Zero-Knowledge that a Number is the Product of two Safe
Primes. In J. Stern, editor, EUROCRYPT 99, volume 1592 of LNCS, pages 107–122. Springer, 1999.

69

http://www.abc4trust.eu
http://www.keylength.com/
http://www.keylength.com/

70 References

CMZ13. M. Chase, S. Meiklejohn, and G. M. Zaverucha. Algebraic MACs and Keyed-Verification Anonymous
Credentials. eprint, 2013/516, 2013. http://eprint.iacr.org/2013/516.

Cor11. Microsoft Corporation. Proof of Concept on integrating German Identity Scheme with U-Prove tech-
nology, 2011. http://www.microsoft.com/mscorp/twc/endtoendtrust/vision/eid.aspx.

CS97. J. Camenisch and M. Stadler. Efficient Group Signature Schemes for Large Groups (Extended Ab-
stract). In B. Kaliski, editor, CRYPTO 97, volume 1294 of LNCS, pages 410–424. Springer, 1997.

DF02. I. Damg̊ard and E. Fujisaki. A Statistically-Hiding Integer Commitment Scheme Based on Groups
with Hidden Order. In Y. Zheng, editor, ASIACRYPT 02, volume 2501 of LNCS, pages 125–142.
Springer, 2002.

FO97. E. Fujisaki and T. Okamoto. Statistical Zero Knowledge Protocols to Prove Modular Polynomial
Relations. In B. S. Kaliski Jr., editor, CRYPTO 97, volume 1294 of LNCS, pages 16–30. Springer,
1997.

FS87. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature
Problems. In A. M. Odlyzko, editor, CRYPTO 86, volume 263 of LNCS, pages 186–194. Springer,
1987.

GGM13. C. Garman, M. Green, and I. Miers. Decentralized Anonymous Credentials. ePrint, 2013/622, 2013.
http://eprint.iacr.org/2013/622.

GS08. J. Groth and A. Sahai. Efficient Non-interactive Proof Systems for Bilinear Groups. In N. P. Smart,
editor, EUROCRYPT 08, volume 4965 of LNCS, pages 415–432. Springer, 2008.

GS12. J. Groth and A. Sahai. Efficient Noninteractive Proof Systems for Bilinear Groups. SIAM Journal on
Computing, 41(5):1193–1232, 2012.

HK09. D. Hofheinz and E. Kiltz. The Group of Signed Quadratic Residues and Applications. In S. Halevi,
editor, CRYPTO 09, volume 5677 of LNCS, pages 637–653. Springer, 2009.

IRM. IRMA – I Reveal My Attributes. Research Project. https://www.irmacard.org.
Lip03. H. Lipmaa. On Diophantine Complexity and Statistical Zero Knowledge Arguments. In C.-S. Laih,

editor, ASIACRYPT 03, volume 2894 of LNCS, pages 398–415. Springer, 2003.
NFHF09. T. Nakanishi, H. Fujii, Y. Hira, and N. Funabiki. Revocable Group Signature Schemes with Constant

Costs for Signing and Verifying. In S. Jarecki and G. Tsudik, editors, PKC 09, volume 5443 of LNCS,
pages 463–480. Springer, 2009.

NP13. L. Nguyen and C. Paquin. U-Prove Designated-Verifier Accumulator Revocation Extension. TechRe-
port MSR-TR-2013-87, 2013.

Pai99. P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In J. Stern,
editor, EUROCRYPT 99, volume 1592 of LNCS, pages 223–238. Springer, 1999.

Paq13. C. Paquin. U-Prove Cryptographic Specification V1.1 (Revision 3), 2013.
Ped91. T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In

J. Feigenbaum, editor, CRYPTO 91, volume 576 of LNCS, pages 129–140. Springer, 1991.
PotEU01. European Parliament and Council of the European Union. Regulation (EC) No 45/2001. Official

Journal of the European Union, 2001.
PotEU09. European Parliament and Council of the European Union. Directive 2009/136/EC. Official Journal

of the European Union, 2009.
PS96. D. Pointcheval and J. Stern. Security Proofs for Signature Schemes. In U. Maurer, editor, EURO-

CRYPT 96, volume 1070 of LNCS, pages 387–398. Springer, 1996.
PZ13. C. Paquin and G. Zaverucha. U-prove Cryptographic Specification v1.1 (Revision 2). Technical report,

Microsoft Corporation, April 2013.
Sch91. C. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology, 4(3):161–174,

1991.
Sch10. H. A. Schmidt. National strategy for trusted identities in cyberspace. Cyberwar Resources Guide,

Item 163, 2010. http://www.projectcyw-d.org/resources/items/show/163.
SCO+01. A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust Non-interactive Zero

Knowledge. In J. Kilian, editor, CRYPTO 01, volume 2139 of LNCS, pages 566–598. Springer, 2001.
Tea10. IBM Research Zurich Security Team. Specification of the Identity Mixer Cryptographic Library. IBM

Technical Report RZ 3730 (99740), 2010.
Zav13. G. Zaverucha. U-Prove ID escrow extension. TechReport MSR-TR-2013-86, 2013.

http://eprint.iacr.org/2013/516
http://www.microsoft.com/mscorp/twc/endtoendtrust/vision/eid.aspx
http://eprint.iacr.org/2013/622
https://www.irmacard.org
http://www.projectcyw-d.org/resources/items/show/163

	Introduction
	Contributions
	Use Case: eIDs and Online Casinos
	Related Work

	Preliminaries
	Notation
	Cryptographic Background

	Privacy ABC Systems
	Syntax
	Oracles for Our Security Definitions
	Security Definitions for PABC-Systems

	Building Blocks
	Global Setup
	Commitment Schemes
	Privacy-Enhancing Attribute-Based Signatures
	Revocation Schemes
	Pseudonyms

	Generic Construction of PABC s
	Intuition
	Formal Description of the Construction

	Security of the Generic Construction
	Correctness
	Pseudonym Collision-Resistance
	Unforgeability
	Simulatable Privacy

	Secure Instantiations of Building Blocks
	Global System Parameter Generation
	A Commitment Scheme based on Pedersen Commitments
	A PABS-Scheme Based on CL-Signatures
	A PABS-Scheme Based on Brands' Signatures
	A Revocation Scheme Based on the Nakanishi et al. Scheme
	A Pseudonym Scheme

	Security of Instantiation
	Security Proofs of Commitment Scheme
	Security Proofs of PABS-Scheme Based on CL Signatures
	Security Proofs of PABS-Scheme Based on Brands' Signatures
	Security Proofs of Revocation Scheme
	Security Proofs of Pseudonym Scheme

	Conclusion

