
D2.2 - Architecture for Attribute-based
Credential Technologies - Final Version

Patrik Bichsel, Jan Camenisch, Maria Dubovitskaya, Robert R. Enderlein,
Stephan Krenn, Ioannis Krontiris, Anja Lehmann, Gregory Neven,

Janus Dam Nielsen, Christian Paquin, Franz-Stefan Preiss, Kai Rannenberg, Ahmad Sabouri,
Michael Stausholm

Editor: Ahmad Sabouri (Goethe University Frankfurt)
Reviewers: Norbert Götze (Nokia Solutions and Networks),

Jonas Lindstrøm Jensen (Alexandra Institute)
Identifier: D2.2
Type Deliverable
Version 1.0
Date: 14/08/2014
Status: Final
Class: Public

Abstract
The goal of ABC4Trust is to address the federation and interchangeability of technologies that support

trustworthy yet Privacy-preserving Attribute-based Credentials (Privacy-ABCs). Towards this goal, one of the
main objectives of the project is to define a common, unified architecture for Privacy-ABC systems to allow
comparing their respective features and combining them into common platforms. The first version of this
architecture is described in deliverable D2.1 of the project. Its main contribution is the specification of the data
artefacts exchanged between the implicated entities (i.e. issuer, user, verifier, revocation authority, etc.), in such
a way that the underlying differences of concrete Privacy-ABC implementations are abstracted away through
the definition of formats that can convey information independently from the mechanism-specific cryptographic
data. It also defines all technology-agnostic components and corresponding APIs a system needs to implement in
order to perform the corresponding operations. This Deliverable (D2.2) comes to present the final version of the
architecture. This document targets to keep early adopters up-to-date, so it presents only those changes that are
relevant to the development of applications and removes the details of the internal components.

The research leading to these results has received funding from the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement n° 257782 for the project Attribute-based Credentials for Trust (ABC4Trust) as part
of the “ICT Trust and Security Research” theme.

ABC4Trust Deliverable D2.2

Members of the ABC4TRUST consortium

1. Alexandra Institute AS ALX Denmark
2. CryptoExperts SAS CRX France
3. Eurodocs AB EDOC Sweden
4. IBM Research Zurich IBM Switzerland
5. Johann Wolfgang Goethe Universität Frankfurt GUF Germany
6. Microsoft NV MS Belgium
7. Miracle A/S MCL Denmark
8. Nokia Solutions and Networks Management International NSN Germany
9. Computer Technology Institute & Press - “DIOPHANTUS” CTI Greece
10. Söderhamn Kommun SK Sweden
11. Technische Universität Darmstadt TUD Germany
12. Unabhängiges Landeszentrum für Datenschutz ULD Germany

Disclaimer: The information in this document is provided "as is", and no guarantee or warranty is
given that the information is fit for any particular purpose. The above referenced consortium members
shall have no liability for damages of any kind including without limitation direct, special, indirect, or
consequential damages that may result from the use of these materials subject to any liability which is
mandatory due to applicable law.

Copyright 2014 by Goethe University Frankfurt, IBM Research – Zurich, Microsoft NV

Page 1 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

List of Contributors

Chapter Author(s)
Executive Summary Ahmad Sabouri (GUF), Ioannis Krontiris (GUF)
First Chapter Ahmad Sabouri (GUF), Ioannis Krontiris (GUF), Kai Rannenberg (GUF)
Second Chapter Gregory Neven (IBM)
Third Chapter Jan Camenisch (IBM), Anja Lehmann (IBM)
Fourth Chapter Patrik Bichsel (IBM), Jan Camenisch (IBM), Maria Dubovitskaya (IBM),

Robert R. Enderlein (IBM), Anja Lehmann (IBM), Gregory Neven (IBM),
Christian Paquin (MS), Franz-Stefan Preiss (IBM)

Fifth Chapter Jan Camenisch (IBM), Anja Lehmann (IBM), Gregory Neven (IBM),
Janus Dam Nielsen (ALX), Christian Paquin (MS), Franz-Stefan Preiss
(IBM), Michael Stausholm (ALX)

Sixth Chapter Patrik Bichsel (IBM), Robert R. Enderlein (IBM), Stephan Krenn (IBM)
Seventh Chapter Jan Camenisch (IBM), Maria Dubovitskaya (IBM), Robert R. Enderlein

(IBM), Anja Lehmann (IBM), Gregory Neven (IBM), Christian Paquin
(MS), Franz-Stefan Preiss (IBM)

Eighth Chapter Ahmad Sabouri (GUF), Ioannis Krontiris (GUF), Kai Rannenberg (GUF)
Ninth Chapter Christian Paquin (MS)

Page 2 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Executive Summary

This deliverable presents the the final version of the architectural framework for Privacy-ABC technolo-
gies that has been produced within the ABC4Trust project. The architecture allows different realizations
of these technologies to coexist, be interchanged, and federated. This enables users to obtain credentials
following different Privacy-ABC technologies and use them indifferently on the same hardware and software
platforms, as well as service providers to adopt whatever Privacy-ABC technology best suits their needs.

More specifically, the architecture has been designed to decompose future implementations of Privacy-
ABC technologies into sets of modules and specify the abstract functionality of these components in such
a way that they are independent from algorithms or cryptographic components used underneath. The
functional decomposition foresees possible architectural extensions to additional functional modules that
may be desirable and feasible using future Privacy-ABC technologies or extensions of existing ones.

The architecture of ABC4Trust is defined by following a layered approach, where the so-called ABCE
(ABC Engine) top layer provides the application developers with a technology agnostic API, thereby
abstracting the internal design and structure. Furthermore, the architecture defines the specification of the
data artefacts exchanged between the implicated actors, in such a way that the underlying differences of
concrete Privacy-ABCs are abstracted away through the definition of formats that can convey information
independently from the mechanism-specific cryptographic data. So the document emphasizes on the XML
based specification of the corresponding messages exchanged during the issuance, presentation, revocation,
and inspection of Privacy-ABCs.

The architecture has been improved compared to version 1, considering the valuable feedback we
received from its realization in the reference implementation work package (WP4) as well as its deployment
in the ABC4Trust pilots. This deliverable removes the details of how the ABCE layer looks internally and
gives a simpler and more modular explanation of its functionality. Correspondingly, it presents an updated
“external” API that the ABCE layer offers to the application layer, as well as an updated version of the
data formats. It also presents some updates in the definition of concepts and features of Privacy-ABCs.

This deliverable also presents the new crypto architecture, which replaces version 2 of IBM’s Identity
Mixer (Idemix) Library. Its main advantage compared to the old Idemix library is the increased modularity
of its design. This modularity allowed us to implement additional features, such as supporting U-Prove
credentials, and a predicate for checking linear combinations among attributes.

In order to facilitate understanding and adoption of the ABC4Trust architecture, the document
provides an analysis of the trust relationships required in the ecosystem of Privacy-ABCs as well as an
example scenario of an online library to better illustrate the different artefacts of the language framework.

Consideration is also given on how the proposed architecture integrates with existing identity man-
agement systems. The deliverable provides an analysis regarding the applicability of the ABC4Trust
architecture to the popular existing identity protocols and frameworks such as WS-*, SAML, OpenID,
OAuth and X.509. It shows how Privacy-ABCs can be applied in these protocols and how the former can
help to alleviate some of their security, privacy and scalability issues of the latter.

Page 3 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Contents
1 Introduction 8

1.1 Privacy issues of current IdM systems . 8
1.1.1 IdSP knows all user transactions . 9
1.1.2 Linkability across domains . 9
1.1.3 Proportionality often violated . 9

1.2 Privacy-preserving Attribute-based Credentials . 9
1.2.1 Privacy-ABCs Highlights . 10

1.3 The ABC4Trust Project . 11
1.4 The ABC4Trust Architecture . 11

1.4.1 Goals of the Architecture . 11
1.4.2 Architectural Strategies . 12

1.5 Structure of the document . 13
1.6 What is new compared to H2.2 . 13

2 Features and Concepts of Privacy-ABCs 15
2.1 Credentials . 16
2.2 Presentation . 16
2.3 Key Binding . 17
2.4 Pseudonyms . 18
2.5 Inspection . 18
2.6 Credential Issuance . 19
2.7 Revocation . 20
2.8 Security and Privacy Features . 22

2.8.1 Basic Presentation . 22
2.8.2 Key Binding . 23
2.8.3 Advanced Issuance . 23
2.8.4 Pseudonyms . 23
2.8.5 Inspection . 23
2.8.6 Revocation . 24

3 Architecture 25
3.1 Architectural Design . 25

3.1.1 Application Layer . 26
3.1.2 ABCE Layer . 26
3.1.3 Crypto Layer . 27
3.1.4 Storage & Communication Components . 28

3.2 Deployment of the Architecture . 28
3.2.1 Setup and Storage . 28
3.2.2 Presentation of a Token . 30
3.2.3 Issuance of a Credential . 32
3.2.4 Inspection . 34
3.2.5 Revocation . 35

4 ABC4Trust Protocol Specification 36
4.1 Terminology and Notation . 36

4.1.1 Notational Conventions . 36
4.1.2 Namespaces . 37

4.2 Setup . 37
4.2.1 Credential Specification . 37
4.2.2 System Parameters . 43
4.2.3 Issuer Parameters . 44
4.2.4 Inspector Public Key . 45

Page 4 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

4.2.5 Verifier Parameters . 46
4.3 Revocation . 47

4.3.1 Revocation Authority Parameters . 47
4.3.2 Revocation Information . 48
4.3.3 Non-Revocation Evidence . 49

4.4 Presentation . 50
4.4.1 Presentation Policy . 50
4.4.2 Presentation Token . 55
4.4.3 Functions for Use in Predicates . 60

4.5 Issuance . 61
4.5.1 Issuance Policy . 63
4.5.2 Issuance Token . 64
4.5.3 Issuance Messages . 65
4.5.4 Issuance Log Entries . 65
4.5.5 Revocation History . 66
4.5.6 Credential Description . 68

4.6 Identity Selection and Credential Management . 70
4.6.1 Presentation . 70
4.6.2 Issuance . 79

4.7 Formats Used By the Webservice API . 81
4.7.1 CredentialSpecificationAndSystemParameters . 81
4.7.2 IssuancePolicyAndAttributes . 81
4.7.3 IssuanceMessageAndBoolean . 81
4.7.4 RevocationReferences . 82
4.7.5 PresentationPolicyAlternativesAndPresentationToken 82
4.7.6 AttributeList . 83
4.7.7 ABCEBoolean . 83
4.7.8 URISet . 83
4.7.9 IssuerParametersInput . 83
4.7.10 IssuanceReturn . 84

5 API for Privacy-ABCs 85
5.1 ABCE methods for Users . 85
5.2 ABCE methods for Verifiers . 88
5.3 ABCE methods for Issuers . 89
5.4 ABCE methods for Revocation Authorities . 90
5.5 ABCE methods for Inspectors . 93

6 Crypto Architecture 94
6.1 Overview of Cryptographic Architecture . 94

6.1.1 Key Generation Orchestration . 94
6.1.2 Presentation Orchestration . 95
6.1.3 Verification Orchestration . 96
6.1.4 Issuance Orchestration . 97
6.1.5 Building Blocks . 100
6.1.6 Proof Engine . 102

6.2 Cryptographic Primitives . 105
6.2.1 Algebraic Background . 105
6.2.2 Zero-Knowledge Proofs of Knowledge . 106
6.2.3 Commitment Schemes . 108
6.2.4 Blind Signature Schemes . 109
6.2.5 Verifiable Encryption . 112
6.2.6 Scope-Exclusive Pseudonyms . 114
6.2.7 Revocation . 114

Page 5 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

7 A Case Study based on Privacy-ABCs 117
7.1 Example Scenario . 117
7.2 Credential Specification . 117
7.3 Issuer, Revocation, and System Parameters . 118
7.4 Presentation and Issuance Policies with Basic Features . 118
7.5 Presentation and Issuance Token . 120
7.6 Presentation Policy with Extended Features . 120
7.7 Interaction with the User Interface . 122

8 Trust Relationships in the Ecosystem of Privacy-ABCs 124
8.1 Definition of Trust . 124
8.2 Related Work . 124
8.3 Trust Relationships . 124

8.3.1 Assumptions . 125
8.3.2 Trust by all the parties . 125
8.3.3 Users’ Perspective . 126
8.3.4 Verifiers’ Perspective . 127
8.3.5 Issuers’ Perspective . 128
8.3.6 Inspectors’ Perspective . 128
8.3.7 Revocation Authorities’ Perspective . 129

9 Applicability to existing Identity Infrastructures 130
9.1 WS-* . 130
9.2 SAML . 132
9.3 OpenID . 133
9.4 OAuth . 134

9.4.1 Authorization grant . 135
9.4.2 Access token . 136

9.5 X.509 PKI . 136
9.6 Integration summary . 138

Page 6 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

List of Figures
1 Entities and interactions diagram . 15
2 Architecture of a Privacy-ABC System. 25
3 Overview of the Privacy-ABC Architecture on the User Side 27
4 Presentation of a Token (Application Level) . 31
5 Issuance of a Credential (Application Level) . 33
6 Issuance of Privacy-ABCs . 62
7 Example of generating an Issuer Key Pair including the creation of the intermediate Key

Pair Configuration Template. 95
8 Creation of a Presentation Token. 96
9 Verification of a Presentation Token. 97
10 Initiation of the issuance protocol on the issuer’s side. 98
11 Recipient computes an Issuance Token proving properties used for the credential to be issued. 98
12 Issuer creates signature. 99
13 Recipient finishes signature and stores credential. 100
14 Sequence diagram for the construction of a proof in the Proof Engine. 103
15 Sequence diagram for the verification of a proof in the Proof Engine. 104
16 Protocol flow of the zero-knowledge proof of knowledge specified in (1). The given method

names correspond to those discussed in Section 6.1.6. 107
17 Issuance of a signature for attributes (m1, . . . ,mL). In the first zero-knowledge proof, the

user acts as the prover, while in the second proof the issuer acts as the verifier. If any of
the checks fails or proofs fails, the protocol aborts. 110

18 Issuance of a signature for attributes (m1, . . . ,mL). In the zero-knowledge proof the user
acts as the prover. If any of the checks or proofs fails, the protocol aborts. 112

19 Visualization of the trust relationships . 125
20 WS-Trust protocol flow . 130
21 WS-Trust issuance protocol . 131
22 SAML protocol flow . 132
23 OpenID protocol flow . 133
24 OAuth 2.0 protocol flow . 135
25 X.509 protocol flow . 137

Page 7 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

1 Introduction

Many electronic applications and services require some authentication of participants to establish trust
relations, either for only one endpoint of communication or for both. One widely used mechanism for this
is password-based authentication. Today, individuals are asked to maintain dozens of different usernames
and passwords, one for each website with which they interact. This authentication mechanism is not
always optimal, since it creates a burden to individuals and encourages the reuse of passwords through
multiple services, which in return makes online fraud and identity theft easier. Spoofed website, stolen
passwords and compromised accounts have negative impact not only to individuals but also to businesses
and governments, who are unable to offer high-value online services.

Strong authentication techniques can deliver higher level of security, however, the commonly used ones
introduce some privacy issues. For instance, X.509 [X50] suffers from the “Over Identification” problem,
meaning that due to its static nature, the user has to reveal all the attributes in the credential even if
only a subset of them is required. Furthermore, technologies like OpenID [HBH07] that allow selective
disclosure of the attributes, cause the so-called “Calling Home” problem that enables the Identity Service
Provider to profile the transactions of the user.

In this chapter, we start with a brief discussion about the privacy issues concerning the current IdM
systems. Then we introduce Privacy-ABCs and how they can be used to effectively resolve these privacy
issues. Following that, we go through the objectives and the goals, which ABC4Trust project is aiming
for, and continue with describing the design decisions and strategies which have been considered in the
ABC4Trust architectural work. The last section provides an overview of the document structure and the
organization of the following chapters.

1.1 Privacy issues of current IdM systems

In their everyday offline transactions, people have to present credentials in order to perform a number of
operations. There are several aspects in these transactions that are privacy-respecting, but have not been
preserved in similar transactions online. For example, when individuals have to present their ID card to
open a bank account or board an airplane, the government authority issuing the ID cards does not learn
about every place individuals have to present their card.

However, there are also some aspects of offline transactions that are not privacy-respecting. For
example, showing the ID card to buy alcohol at the store reveals extraneous information, such as the
exact date of birth or the address (e.g. in the case of German ID Card), while what is actually requested
is to prove that one is over a certain age. This is not really a problem in the offline world, because
the infrastructure (i.e., the clerk behind the counter) is not equipped to log and remember all disclosed
information; but things change in the online world: disclosed information is forever remembered.

Users’ online privacy is increasingly threatened as a number of countries are introducing or are about
to introduce electronic identity cards (eID) and drivers licenses [FP10], expanding the use of credentials
in the online world. Moreover, electronic ticketing and toll systems are also widely used all over the world.
As such electronic devices become widespread for identification, authentication, and payment (which links
them to people through credit card systems) in a broad range of scenarios.

One desirable goal of building online identity management systems should be to keep the privacy-
respecting aspects of the offline paradigm and resolve the negative aspects. To see the problems that
emerge for privacy, one has to observe the flow and storage of information between the involved entities.
A typical identity management is based on the relations between three core parties: the user (U) who
requests a service from the Relying Party (RP) that offers the service and relies on the Identity Service
Provider (IdSP) to provide authentic information about the identity of the user.

Here we briefly review some of the main privacy aspects of the practices followed today, based on the
parties and the relations introduced [Bra00].

Page 8 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

1.1.1 IdSP knows all user transactions

Even though the IdSP does not necessarily need to know where the user is authenticating and which
service she is requesting for, this happens in a large portion of the existing federated identity management
systems. More specifically, in those systems where the Identity Service Provider is involved each time a
user authenticates to a Relying Party, the IdSP might be able to keep track of the user actions, depending
on the exchanged information between the IdSP and the RP. This enables the IdSP to trace and link all
communications and transactions of each user. Moreover, if the user does not perform an active role in
the information exchange between the IdSP and the RP (e.g. OpenID [HBH07]), there is a high security
risk of identity theft and impersonation of the user by the IdSP or an intruder who has gained access to
the IdSP resources.

1.1.2 Linkability across domains

In today’s identity management systems, each Relying Party can store all the tokens that are presented to
it, and can link them together. The simplest example is X.509 certificates [X50] where the certificate’s
public key and issuer’s signature act as kind of digital fingerprint, inescapably leaving a digital trail
wherever the citizen presents the certificate. In this manner, dossiers can automatically be compiled for
each individual about his or her habits, behavior, movements, preferences, characteristics, and so on.
Different Relying Parties can exchange and link their data on the same basis.

1.1.3 Proportionality often violated

There are many scenarios where the use of certificates unnecessarily reveals the identity of their holder, for
instance scenarios where a service platform only needs to verify the age of a user but not his/her actual
identity.

A typical example is the citizen PKI, where each citizen is provided with a X.509 certificate [X50] as
the digital identifier for securely accessing the online services offered by the governments. These certificates
contain a set of attributes such as full name, date of birth, gender, and ID number, and inevitably all will
be revealed to the Relying Party each time the certificate is presented.

Revealing more information than necessary not only harms the privacy of the users, but also increases
the risk of abuse of information such as identify theft when information revealed falls in the wrong hands.

1.2 Privacy-preserving Attribute-based Credentials

Over the past years, a number of technologies have been developed to build Privacy-preserving Attribute-
based Credential (Privacy-ABC) systems in a way that they can be trusted, like normal cryptographic
certificates, while at the same time they protect the privacy of their holder, resolving the problems
discussed in the previous section, in addition to other properties.

Such Privacy-ABCs are issued just like ordinary cryptographic credentials (e.g., X.509 credentials)
using a digital (secret) signature key. However, as we will see in Chapter 2, Privacy-ABCs allow their
holder to derive new tokens, in such a way that the privacy of the user is protected. Still, these transformed
tokens can be verified just like ordinary cryptographic credentials (using the public verification key of the
issuer) and offer the same strong security.

There are a handful of proposals on how to realize a Privacy-ABC system in the literature [Cha85,
Bra94, CL01, CL04]. Notable is especially the appearance of two technologies, IBM’s Identity Mixer and
Microsoft’s U-Prove, as well as extended work done in past EU projects. In particular, the EU-funded
projects PRIME1 and PrimeLife2 have actually shown that the state-of-the art research prototypes of
Privacy-ABC systems can indeed confront the privacy challenges of identity management systems.

1 www.prime-project.eu
2 www.primelife.eu

Page 9 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

The PRIME project has designed an architecture for privacy-enhancing identity management that
combines anonymous credentials with attribute-based access control, and anonymous communication.
That project has further demonstrated the practical feasibility with a prototypical implementation of
that architecture and demonstrators for application areas such as e-learning and location-based services.
PRIME has, however, also uncovered that in order for these concepts to be applicable in practice further
research is needed in the areas of user interfaces, policy languages, and infrastructures.

The PrimeLife project has set out in 2008 to take up these challenges and made successful steps
towards solutions in these areas. For instance, it has shown that Privacy-ABC systems can be employed
on smartcards and thus address the requirements of privacy-protecting eID cards [BCGS09]. Also, in the
last decade, a large number of research papers have been published solving probably all roadblocks to
employ Privacy-ABC technologies in practice. This includes means to revoke certificates [Ngu05, BDDD07,
CL02c, CKS09], protection of credentials from malware [Cam06], protection against credential abuse
[CHK+06, CHL06], proving properties about certified attributes [CG08, CC+08], and means to revoke
anonymity in case of misuse [CS03b].

Despite all of this, the effort of understanding Privacy-ABC technologies so-far was rather theoretical
and limited to individual research prototypes. Indeed, PRIME and PrimeLife showed that Privacy-ABC
technologies provide the desirable level of privacy protection, but so far this was demonstrated in a very
limited number of actual production environments with real users.

Furthermore, there has been no commonly agreed set of functions, features, formats, protocols, and
metrics to gauge and compare these Privacy-ABC technologies, and it was hard to judge the pros and
cons of the different technologies to understand which ones are best suited to which scenarios.

Thus, there has been a gap between the technical cryptography and protocol sides of these technologies
and the reality of deploying them in production environments. A related problem with these emerging
technologies was the lack of standards to deploy them. For instance, a position paper published by
ENISA on “Privacy Features of European eID Card Specifications” [NA09] observed that Privacy-ABC
“technologies have been available for a long time, but there has not been much adoption in mainstream
applications and eID card applications” even though countries such as Austria and Germany have taken
some important steps in this sense.

1.2.1 Privacy-ABCs Highlights

A detailed explanation of the features and properties of Privacy-ABCs is presented in Chapter 2. Never-
theless, here we intend to highlight what Privacy-ABCs in principal can offer.

1. Minimal Disclosure: Privacy-ABCs allow the users to derive authentic and verifiable tokens from their
credentials that contain only the required information, therefore avoid disclosing all the attributes
in the credentials. For instance, citizens of a country can obtain an identity credential from their
government and use this credential to participate in an online opinion poll of their residence district
with just disclosing the postcode attribute of their address. Furthermore, it is even possible to make
proof of owning a specific type of credential without revealing any of the attested attributes. As an
example, student of Frankfurt University could get free access to an online cinema providing a proof
of holding a valid “Frankfurt University Student Credential”.

2. Unlinkability: Another key feature of Privacy-ABCs is unlinkability that comes in two different types,
namely, unlinkability to their issuance, and unlinkability across different presentations. The former
indicates that the issuance and the usage (presentation) of a credential cannot be correlated unless
due to the disclosed attributes. Therefore, if the user does not reveal any identifiable information,
the credential issuer and the service provider (verifier) cannot learn more about the user even if
they collude. Similarly, in the latter case, it would not be possible to associate different transactions
of the same user when the revealed information do not provide any linkability.

3. Partial Identities and identifiers: The concept of Pseudonyms in Privacy-ABCs facilitates establishing
different profiles and putting borders between different activities of an individual within the same
context or different ones, and therefore achieve a controlled level of linkability. Pseudonyms are

Page 10 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

similar to public keys and are derived from the users’ secret keys. Nevertheless, unlike public keys
of which there is only one for every secret key, users can generate an unlimited number of unlinkable
pseudonyms for a single secret key.

1.3 The ABC4Trust Project

The aim of the ABC4Trust project is to deepen the understanding in Privacy-ABC technologies, enable
their efficient and effective deployment in practice, and their federation in different domains. To this end,
the project:

1. produces an architectural framework for Privacy-ABC technologies that allows different realizations
of these technologies to coexist, be interchanged, and federated:

(a) Identify and describe the different functional components of Privacy-ABC technologies, e.g. for
issuance of credentials and presentation of tokens;

(b) Produce a specification of data formats, interfaces, and protocol formats for this framework;

2. Defines criteria to compare the properties of realizations of these components in different technologies;
and

3. Provides reference implementations for each of these components.

With a comparative understanding of today’s available Privacy-ABC technologies, it will be easier for
different user communities to decide which technology best serves them in which application scenario. It
will also be easier to migrate to newer Privacy-ABC technologies that will undoubtedly appear over time.
In addition, the same users may want to access applications requiring different Privacy-ABC technologies,
and the same applications may want to cater to user communities preferring different Privacy-ABC
technologies. Finally, the architecture and protocol specifications proposed by the ABC4Trust project
pave the road towards establishing standards that allow for the interchangeability and federation of
Privacy-ABC technologies.

1.4 The ABC4Trust Architecture

From the three project goals above, this document focuses on the first one, namely the architecture for
Privacy-ABC technologies. This is presented extensively in the chapters to follow. It is however useful for
the reader to first understand the goals and design considerations that were taken into account during the
design of this architecture. This subsection elaborates on these decisions and prepares the reader for the
chapters that follow.

1.4.1 Goals of the Architecture

A contribution of this project to the state of the art is the definition of a common unified architecture for
federating and interchanging different Privacy-ABC systems in a way that

1. users will be able to obtain credentials for many Privacy-ABC technologies and use them indifferently
on the same hardware and software platforms, and

2. service providers and IdSPs will be able to adopt whatever Privacy-ABC technology best suits their
needs.

Furthermore, the architecture has been designed to decompose implementations of Privacy-ABC
technologies into sets of modules and specify the abstract functionality of these components in such a way
that they are independent from algorithms or cryptographic components used underneath. The functional
decomposition foresees possible architectural extensions to additional functional modules that may be
desirable and feasible using future Privacy-ABC technologies or extensions of existing ones.

Indeed the project aims not only to federate Privacy-ABC systems but to let them coexist on the same
platform. This implies that different systems must be able to share common architecture elements such as

Page 11 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

user interfaces or credential stores. Thus, common APIs must be enforced across different Privacy-ABC
implementations to ensure their possible coexistence and interchangeability on the same network nodes.
Similarly, different systems should use common communication wrappers to encode and exchange tokens
and other items when communicating with peers on different network nodes, so that a token recipient can
immediately determine what Privacy-ABC technology the token pertains to.

As a result, the architectural framework specifies unified data formats and protocols across Privacy-
ABC implementations to enable not just coexistence and interchangeability on the same network nodes
but also coexistence and possible federation across different network nodes.

1.4.2 Architectural Strategies

This section describes the design decisions and strategies that affect the overall organization of the
architecture and its higher-level structures.

1.4.2.1 A Layered Approach
The architecture of ABC4Trust is defined by following a layered approach, where all Privacy-ABC

related functionalities are grouped together in a layer called ABCE (ABC Engine). It provides simple
interfaces towards the application layer, thereby abstracting the internal design and structure. So, the
focus of the ABC4Trust architecture is to define and standardise the ABCE layer and its interfaces to the
upper layers (e.g. Application). With this respect, it does not analyse the internals of the other layers,
but it only concentrates on defining the interfaces necessary for those layers to use the functionality of
the ABCE and incorporate the corresponding tokens in the overall system. Equally important in the
architecture is the specification of the data artefacts exchanged between the implicated entities, in such a
way that the underlying differences of concrete Privacy-ABCs are abstracted away through the definition
of formats that can convey information independently from the mechanism-specific cryptographic data.

In particular, this document concentrates on the following aspects:

• Functionality and interfaces– We define the functionality of the different layers focusing on the
ABCE layer and its components (see Chapter 3). We then describe how to integrate and use the
ABCE layer along the main use-cases, i.e. presentation of a token, issuance of a credential, inspection
and revocation. For each of these phases, we also describe the corresponding interfaces offered
by the ABCE layer to the application layer (see Chapter 5), so that developers can build easily
ABC-enabled applications.

• Data specification – The issuance and presentation of Privacy-ABC credentials are interactive
processes, potentially involving multiple exchanges of messages. Chapter 4 defines the contents,
encoding and processing of these messages. In particular, it specifies the data artefacts exchanged
during the issuance, presentation, revocation, and inspection of privacy-enhancing attribute-based
credentials. Note that the document remains generic on which specific protocols are used to issue or
present Privacy-ABCs. There are several existing messaging protocols, in which these credentials
can be embedded, or new ones could be defined in the future.

• New crypto architecture – we also present a modular model for the crypto layer. The main
responsibilities of the Cryptographic Engine are to generate cryptographic key material, issue new
credentials by means of a two-party protocol, generate the cryptographic evidence for a Presentation
Token to prove that a user satisfies a Presentation Policy, and verify such a proof. This crypto
architecture defines the building blocks of Privacy-ABC systems and their interfaces allowing
implementation of additional features and extending the functionalities.

1.4.2.2 Building Privacy-ABC-enabled applications
ABC4Trust has provided an open reference implementation of the architecture described in this document

as part of its contributions. The reference implementation of ABC4Trust has embedded into example
applications showing how to integrate the reference components into a sample client-server platform.

Page 12 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Application developers can integrate the reference implementation of the ABC4Trust architecture
directly in their applications, without having to know how its layers are internally structured. That
means the application can incorporate user authentication functionality using Privacy-ABC, according to
the access policy of the requested service, by executing directly the necessary protocols for policy and
token exchange. For that, the application developers must simply follow the interfaces and data formats
described in this document.

To facilitate adoption of Privacy-ABCs, Chapter 7 considers an example scenario of an online library
to better illustrate the different artefacts in the language framework of the ABC4Trust architecture.
Moreover, in Chapter 8, we present an analysis of the trust relationships required in the ecosystem of
Privacy-ABCs so that the technology adopters and decision makers get a better understanding of the
setting.

Nevertheless, other approaches are also possible to integrate Privacy-ABCs. For example, following a
passive federated redirection pattern, the application may redirect the user to a Relying Party Secure
Token Service (RP-STS) component for authentication. This is shown and discussed in more details in
Chapter 9, where we discuss how the ABC4Trust architecture can be integrated with existing federated
systems.

1.5 Structure of the document

The rest of this document is organized as follows:

Chapter 2 gives an introduction to the features supported by Privacy-ABCs and the actors involved,
in different kind of interactions, namely the presentation of tokens, inspection, credential issuance and
revocation.

Chapter 3 presents the modules of the ABC4Trust architecture and concentrates in particular on the
ABCE layer. It revisits each of the scenarios introduced in Chapter 2 and shows specifically how they are
performed by the ABCE modules.

Chapter 4 can be considered as the core part of this document. It provides the specification for data
artefacts exchanged during the Privacy-ABCs lifecycle (issuance, presentation, revocation, and inspection).
It introduces an XML notation to specific all the necessary data formats, e.g. credentials contents, access
policies, presentation tokens, etc., as well as their wrapper message formats.

Chapter 5 defines the APIs for each of the ABCE modules. More specifically, it specifies the interfaces
exposed to the outside world (and in particular to the application layer).

Chapter 6 presents the proposed architecture for the crypto layer. More specifically, it presents the
building blocks and their interconnections.

Chapter 7 provides an example scenario to further illustrate on the XML artefacts of the language
framework.

Chapter 8 analyses the ecosystem of Privacy-ABCs and explains the trust relationships that are
required between the involved entities.

Chapter 9 presents an overview of the most popular identity protocols and frameworks (e.g. WS-*,
SAML, OpenID, OAuth, and X.509) and describes the common challenges of these federated systems
concerning security, privacy and scalability. The analysis provided in this chapter, demonstrate how
Privacy-ABC technologies can help to alleviate these challenges. The reader may note that in this chapter
the Identity Service Provider is named “Identity Provider”. The reason for this is, that many of the existing
protocols use this term, though it is misleading, as the respective entity does not provide identities.

1.6 What is new compared to H2.2

This document is an update of Heartbeat H2.2. The most important differences compared to H2.2 are
listed below; other changes are mostly minor.

Page 13 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

• We added a section explaining the security and privacy features of Privacy-ABCs (Section 2.8),
without going into the details of formal cryptographic definitions.

• We updated the architecture chapter to be consistent with the reference implementation (Section 3).

• We added a new section describing the new cryptographic architecture (Section 6).

• We also added a new section with the XML artefacts for an example usage scenario of an online
library (Section 7).

• Finally, we added a new section describing the various trust relationships in a complete Privacy-ABC
system (Section 8).

Page 14 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

2 Features and Concepts of Privacy-ABCs

This section provides a detailed explanation on the features supported by privacy-enhancing attribute-
based credentials (Privacy-ABCs), on the different involved entities, and on the type of interactions that
they engage in.

Figure 1: Entities and interactions diagram

Figure 1 gives an overview of the different entities and the interactions between them.

• The User is at the center of the picture, collecting credentials from various Issuers and controlling
which information from which credentials she presents to which verifiers. The human User is
represented by her User Agent, a software component running either on a local device (e.g., on the
User’s computer or mobile phone) or remotely on a trusted cloud service. The User may own special
hardware tokens to which credentials can be bound to improve security. In the identity management
literature, the User is sometimes referred to as the requester or the subject.

• An Issuer issues credentials to Users, thereby vouching for the correctness of the information
contained in the credential with respect to the User to whom the credential is issued. Before issuing a
credential, the Issuer may have to authenticate the User, which it may do using Privacy-ABCs, using
a different online mechanism (e.g., username and password), or using out-of-band communication
(e.g., by requiring the User to physically present herself at the Issuer’s office). In the identity
management literature, the Issuer is sometimes referred to as the identity provider or attribute
authority.

• A Verifier protects access to a resource or service that it offers by imposing restrictions on the
credentials that Users must own and the information from these credentials that Users must present
in order to access the service. The Verifier’s restrictions are described in its presentation policy.
The User generates from her credentials a presentation token that contains the required information
and the supporting cryptographic evidence. In the identity management literature, the Verifier is
sometimes also referred to as the relying party, the server, or the service provider.

• A Revocation Authority is responsible for revoking issued credentials, so that these credentials can
no longer be used to generate a presentation token. The use of a particular Revocation Authority
may be imposed by the Issuer, in which case the revoked credentials cannot be used with any Verifier
for any purpose, or by the Verifier, in which case the effect of the revocation is “local” to the Verifier

Page 15 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

in the sense that being revoked by one Verifier does not affect a user’s presentations with other
Verifiers. Both the User and the Verifier must obtain the most recent revocation information from
the Revocation Authority to generate, respectively verify, presentation tokens.

• An Inspector is a trusted authority who can de-anonymize presentation tokens under specific
circumstances. To make use of this feature, the Verifier must specify in the presentation policy
which Inspector should be able to recover which attribute(s) under which circumstances. The
User is therefore aware of the de-anonymization options when the token is generated and actively
participates to make this possible; therefore the User can make a conscious decision based on her
trust in the Inspector.

In an actual deployment, some of the above roles may actually be fulfilled by the same entity or split
among many. For example, an Issuer can at the same time play the role of Revocation Authority and/or
Inspector, or an Issuer could later also be the Verifier of tokens derived from credentials that it issued.

Moreover, some of the flows presented in this document could be adapted for particular deployments
and scenarios. It is assumed that Verifiers already have in their possession or trust the Issuer and
Revocation Authority data needed to validate a presentation token. Nothing prevents, however, a User
to collect this data and present it to the verifier in a certified manner in a setup phase by piggybacking
on an existing infrastructure (e.g., by signing the artifacts using an X.509 certificate). This would add
flexibility to the system and allow dynamic trust establishments between the parties.

2.1 Credentials

A credential is a certified container of attributes issued by an Issuer to a User. An attribute is described
by the attribute type, determining the semantics of the attribute (e.g., first name), and the attribute value,
determining its contents (e.g., John). By issuing a credential, the Issuer vouches for the correctness of
the contained attributes with respect to the User. The User can then later use her credentials to derive
presentation tokens that reveal partial information about the encoded attributes to a Verifier. Of course,
the trustworthiness of the Issuer’s statement depends on its identity vetting processes: an Issuer that
requires Users to physically show up at an office with a valid picture ID is probably more reliable than an
Issuer that certifies any self-claimed value without further evidence.

The credential specification specifies the list of attribute types that are encoded in a credential. Since
Privacy-ABCs natively only support integers of limited size (typically 256 bits) as attribute values, the
credential specification also specifies how the attribute values are mapped to their integer representation.
Depending on the data type and size of the attribute value, this encoding may involve a cryptographic
hash to be applied.

At setup, the Issuer generates public issuer parameters and a secret issuance key. The issuer parameters
are used by verifiers to verify the authenticity of presentation tokens. Trust management and distribution
are out of scope of this specification; a standard public-key infrastructure (PKI), e.g., using hierarchical
certification authorities, can be used to ensure that verifiers obtain authentic copies of the credential
specifications and issuer parameters. Apart from cryptographic information, the issuer parameters also
contain other meta-data such as the hash algorithm to use to create presentation tokens, as well as
information for key binding, and revocation (see later). The Issuer keeps the issuance key strictly secret
and uses it only to issue credentials.

2.2 Presentation

To provide certified information to a Verifier (for authentication or an access decision), the User uses one
or more of her credentials to derive a presentation token and sends it to the Verifier. A single presentation
token can contain information from any number of credentials. The token can reveal a subset of the
attribute values in the credentials (e.g., IDcard.firstname = “John”), prove that a value satisfies a certain
predicate (e.g., IDcard.birthdate < 1996 01 01) or that two values satisfy a predicate (e.g., IDcard.lastname
= creditcard.lastname).

Page 16 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Apart from revealing information about credential attributes, the presentation token can optionally
sign an application-specific message and/or a random nonce to guarantee freshness. Moreover, presentation
tokens support a number of advanced features such as pseudonyms, key binding, inspection, and revocation
that are described in more details below.

A Verifier announces in its presentation policy which credentials from which Issuers it accepts and which
information the presentation token must reveal from these credentials. The Verifier can cryptographically
verify the authenticity of a received presentation token using the credential specifications and issuer
parameters of all credentials involved in the token. The Verifier must obtain all public information,
including the credential specifications and issuer parameters, in a trusted manner, e.g., by using a
traditional PKI to authenticate them or retrieving them from a trusted location.

The presentation token created in response to such a presentation policy consists of the presentation
token description, containing a mechanism-agnostic description of the revealed information, and the
presentation token evidence, containing opaque technology-specific cryptographic data in support of the
token description.

Presentation tokens based on Privacy-ABCs are in principle cryptographically unlinkable and untrace-
able, meaning that Verifiers cannot tell whether two presentation tokens were derived from the same
or from different credentials, and that Issuers cannot trace a presentation token back to the issuance of
the underlying credentials. However, we will later discuss additional mechanisms that, with the User’s
consent, enable a dedicated third party to recover this link again (see Section 2.5 for more details).

Obviously, presentation tokens are only as unlinkable as the information they intentionally reveal. For
example, tokens that explicitly reveal a unique attribute (e.g., the User’s social security number) are
fully linkable. Moreover, pseudonyms and inspection can be used to purposely create linkability across
presentation tokens (e.g., to maintain state across sessions by the same User) and create traceability of
presentation tokens (e.g., for accountability reasons in case of abuse). Finally, Privacy-ABCs have to be
combined with anonymous communication channels (e.g., Tor onion routing) to avoid linkability in the
“layers below”, e.g., by the IP addresses in the underlying communication channels or by the physical
characteristics of the hardware device on which the tokens were generated.

2.3 Key Binding

To prevent “credential pooling”, i.e., multiple Users sharing their credentials, credentials can optionally be
bound to a secret key, i.e. a cryptographically strong random value that is assumed to be known only to
a particular user. The credential specification specifies whether the credentials issued according to this
specification are to employ key binding or not.

A presentation token derived from such a key-bound credential always contains an implicit proof
of knowledge of the underlying secret key, so that the Verifier can be sure that the rightful owner of
the credential was involved in the creation of the presentation token. As an extra protection layer, the
credentials can also be bound to a trusted physical device, such as a smart card, by keeping the secret key
in a protected area of the device. That is, the key cannot be extracted from the device, but the device
does participate in the presentation token generation to include an implicit proof of knowledge of this key
in the token. Thus, for credentials that are key-bound to a physical device it is impossible to create a
presentation token without the device.

The issuance of a key-bound credential can optionally be performed in such a way that the newly
issued credential is bound to the same secret key as an existing credential already owned by the User —
without the Issuer learning the secret key in the process (see Section 2.6). A Verifier can also optionally
impose in its presentation policy that all key-bound credentials involved in the creation of the token must
be bound to the same secret keys. Thereby, the secret key becomes a valuable “master secret” that, when
revealed to a third party, allows the latter to take over the User’s entire digital identity.

Page 17 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

2.4 Pseudonyms

There are many situations where a controlled linkability of presentation tokens is actually desirable. For
example, web services may want to maintain state information per user or user account to present a
personalized interface, or conversation partners may want to be sure to continue a conversation thread
with the same person that they started it with.

Privacy-ABCs have the concept of pseudonyms to obtain exactly such controlled linkability. If the
secret key from Section 2.3 is seen as the equivalent of a User’s secret key in a classical public-key
authentication system, then a pseudonym is the equivalent of the User’s public key. Just like a public
key, it is derived from the User’s secret key and can be given to a Verifier so that the User can later
re-authenticate by proving knowledge of the secret key underlying the pseudonym. Unlike public keys
of which there is only one for every secret key, however, Users can generate an unlimited number of
unlinkable pseudonyms for a single secret key. Users can thus be known under different pseudonyms with
different Verifiers, yet authenticate to all of them using the same secret key.

To be able to re-authenticate under a previously established pseudonym, the User may need to store
some additional information used in the generation of the pseudonym. To assist the User in keeping track
of which pseudonym she used at which Verifier, the Verifier’s presentation policy specifies a pseudonym
scope, which is just a string that the User can use as a key to look up the appropriate pseudonym. The
scope string could for example be the identity of the Verifier or the URL of the web service that the User
wants to access.

We distinguish between the following three types of pseudonyms:

• Verifiable pseudonyms are pseudonyms derived from an underlying secret key as described above,
allowing the User to re-authenticate under the pseudonym by proving knowledge of the secret key.
Presenting a verifiable pseudonym does not involve presenting a corresponding presentation token
and is useful in login scenarios, e.g., to replace usernames/passwords.

• Certified pseudonyms are verifiable pseudonyms derived from a secret key that also underlies an
issued credential. By imposing same-key binding in the presentation policy and token (see Section
2.3), a single presentation token can therefore prove ownership of a credential and at the same time
establish a pseudonym based on the same secret key. As an example, a student could create several
personas on a school discussion board using its core student credential, presenting the pseudonym
associated with each persona, and without the possibility of anyone else (including a malicious
Issuer) to present a matching pseudonym to hijack the user’s identity.

• Scope-exclusive pseudonyms are verifiable pseudonyms that are guaranteed to be unique per scope
string and per secret key. For normal (i.e., non-scope-exclusive) pseudonyms, nothing prevents a
User from generating multiple unlinkable pseudonyms for the same scope string. For scope-exclusive
pseudonyms, it is cryptographically impossible to do so. By imposing a scope-exclusive pseudonym
to be established, a Verifier can be sure that only a single pseudonym can be created for each
credential or combination of credentials that are required in the presentation. This feature can be
useful to implement a form of “consumption control” in situations (e.g., online petitions or one-time
coupons) where users must remain anonymous to the Verifier but should not be allowed to create
multiple identities based on a single credential. Note that scope-exclusive pseudonyms for different
scope strings are still unlinkable, just like normal verifiable pseudonyms.

2.5 Inspection

Absolute user anonymity in online services can easily lead to abuses such as spam, harassment, or fraud.
Privacy-ABCs give Verifiers the option to strike a trade-off between anonymity for honest users and
accountability for misbehaving users through a feature called inspection.

An Inspector is a dedicated entity, separate from the Verifier, who can be asked to uncover one or
more attributes of the User who created a presentation token, e.g., in case of abuse. The Inspector must

Page 18 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

on one hand be trusted by the User not to uncover identities unnecessarily, and must on the other hand
be trusted by the Verifier to assist in the recovery when an abuse does occur.

Presentation tokens are fully anonymous by default, without possibility of inspection. To enable an
Inspector to trace a presentation token when necessary, the presentation policy must explicitly specify
the identity of the Inspector, which information the Inspector must be able to recover, and under which
circumstances the Inspector can be asked to do so. The User then creates the presentation token in a
particular way so that the Verifier can check by himself, i.e., without help from the Inspector, that the
token could be inspected under the specified restrictions if necessary.

In more technical detail, the Inspector first sets up a public encryption key and a secret decryption
key; he makes the former publicly available but keeps the latter secret. The presentation policy specifies

• (a reference to) the Inspector’s public key,

• which attribute(s) from which credential(s) which Inspector must be able to recover, and

• the inspection grounds, i.e., an arbitrary human- and/or machine-readable string describing the
circumstances under which the token can be inspected.

The User then prepares the presentation token so that it contains encrypted versions of the requested
attribute values under the respective public key of the suggested Inspector, together with a verifiable
cryptographic proof that the encryption contains the same attribute values as encoded in the User’s
credentials and certified by the Issuer. Just like Issuer parameters, the User must be able to obtain a
trusted copy of the Inspector’s public key, e.g., through a PKI.

When the situation described in the inspection grounds arises, the Inspection Requester can ask for an
inspection. Besides the Verifier, other entities such as criminal prosecutors, courts or the User herself are
also potential requesters for inspection. Usually the Verifier holds the stored copy of the presentation
token and will send it to the Inspector for inspection, possibly together with some kind of evidence (e.g.,
transaction logs, inquiry of competent authority, court order) that the inspection grounds have been
fulfilled. The inspection grounds are cryptographically tied to the presentation token, so the Verifier
cannot change these after having received the token. The Inspector uses its secret key to decrypt the
encrypted attribute values and returns the clear text values to the Inspection Requestor.

De-anonymization of presentation tokens is probably the main use case for inspection, but it can also
be used to reveal useful attribute values to third parties instead of to the Verifier himself. For example,
suppose the Verifier is an online merchant wishing to accept credit card payments without running the
risk of having the stored credit card data stolen by hackers. In that case, he can make the User encrypt
her credit card number under the public key of the bank by specifying the bank as an Inspector for the
credit card number with “payment” as inspection grounds.

2.6 Credential Issuance

In the simplest setting, an Issuer issues credentials to Users “from scratch”, i.e., without relation to any
existing credentials already owned by the Users. In this situation, the User typically has to convince the
Issuer through some out-of-band mechanism that she qualifies for a credential with certain attribute values,
e.g., by showing up in person at the Issuer’s office and showing a physical piece of ID, or by providing
some bootstrap electronic identity. Credential issuance is a multi-round interactive protocol between
the Issuer and the User. The attribute values can be specified by either parties, or jointly generated at
random (i.e. the Issuer can be ensured an attribute value is chosen randomly and not chosen solely by
User, but without the Issuer learning the attribute value).

Privacy-ABCs also support a more advanced form of credential issuance where the information
embedded in the newly issued credential is “carried over” from existing credentials already owned by the
User, without the Issuer being able to learn the carried-over information in the process. In particular, the
newly issued credential can

1. carry over attribute values from an existing credential,

Page 19 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

2. carry over “self-claimed” attribute values, i.e., values chosen by the User,

3. be bound to the same secret key as an existing credential or verifiable pseudonym (see Sections 2.3
and 2.4), and

all without the Issuer being able to learn the carried-over attribute values or secret key(s) in the
process.

Moreover, the Issuer can insist that certain attributes be generated jointly at random, meaning that
the attribute will be assigned a fresh random value. The Issuer does not learn the value of the attribute,
but at the same time the User cannot choose, or even bias, the value assigned to the attribute. This
feature is for instance helpful to impose usage limitation of a credential. To this end, the Issuer first
embeds a jointly random value as serial number in the credential. A Verifier requesting a token based on
such a credential can require that its serial number attribute must be disclosed by the User, such that it
can detect if the same credential is used multiple times. The jointly random attribute hereby ensures that
the Verifier and Issuer cannot link the generated token and issued credential together, and the User can
not cheat by biasing the serial number in the credential.

The Issuer publishes or sends to the User an issuance policy consisting of a presentation policy and a
credential template. The presentation policy expresses which existing credentials the User must possess in
order to be issued a new credential, using the same concepts and format as the presentation policy for
normal token presentation (see Section 2.2). The User prepares a special presentation token that fulfils
the stated presentation policy, but that contains additional cryptographic information to enable carrying
over attribute and key binding information. The credential template describes the relation of the new
credential to the existing credentials used in the presentation token by specifying

• which attributes of the new credential will be assigned the same value as which attributes from
which credential in the presentation token,

• whether the new credential will be bound to the same secret key as one of the credentials or
pseudonyms in the presentation token, and if so, to which credential or pseudonym.

The User and Issuer subsequently engage in a multi-round issuance protocol, at the end of which the
User obtains the requested credential.

2.7 Revocation

No identification system is complete without a proper means of revoking credentials. There can be many
reasons to revoke a credential. For example, the credential and the related user or device secrets may have
been compromised, the User may have lost her right to carry a credential, or some of her attribute values
may have changed. Moreover, credentials may be revoked for a restricted set of purposes. For example, a
football hooligan’s digital identity card could be revoked for accessing sport stadiums, but is still valid for
voting or submitting tax applications.

In classical public-key authentication systems, revocation usually works by letting either the Issuer or a
dedicated Revocation Authority publish the serial numbers of revoked certificates in a so-called certificate
revocation list. The Verifier then simply checks whether the serial number of a received certificate is on
such a list or not. The same approach does not work for Privacy-ABCs, however, as Privacy-ABCs should
not have a unique fingerprint value that must be revealed at each presentation, as this would nullify
the unlinkability of the presentation tokens again. However, there are cryptographically more advanced
revocation mechanisms that provide the same functionality in a privacy-preserving way, i.e., without
imposing a unique trace on the presentation tokens. This document describes an abstract interface that
covers all currently known revocation mechanisms.

Credentials are revoked by dedicated Revocation Authorities, which may be separate entities, or may
also take the role of Issuer or Verifier. The Revocation Authority publishes its revocation parameters and
regularly (e.g., at regular time intervals, or whenever a new credential is revoked) publishes the most recent
revocation information that Verifiers use to make sure that the credentials used in a presentation token
have not been revoked. The revocation parameters contain information where and how the Verifiers can

Page 20 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

obtain the most recent revocation information. Depending on the revocation mechanism, the identifiers
of revoked credentials may or may not be visible from the revocation information. It is important that
Verifiers obtain the most recent revocation information from the Revocation Authority directly, or that
the revocation information is signed by the Revocation Authority if it is provided by the User together
with the presentation token.

In order to prove that their credentials have not been revoked, Users may have to maintain non-
revocation evidence for each credential and for each Revocation Authority against which the credential
must be checked. The first time that a User checks one of her credentials against a particular Revocation
Authority, she obtains an initial non-revocation evidence. Later, depending on the revocation mechanism
used, the User may have to obtain regular non-revocation evidence updates at each update of the revocation
information. Also depending on the revocation mechanism, these evidence updates may be the same for
all Users/credentials or may be different for each User/credential. In the latter case, again depending on
the mechanism, the Users may fetch their updates from a public bulletin board or obtain their updates
over a secure channel.

We distinguish between two types of revocation. Apart from a small list of exceptions, all revocation
mechanisms can be used for either type of revocation.

• In Issuer-driven revocation, the Issuer specifies as part of the issuer parameters the Revocation
Authority (and revocation parameters) to be used when verifying a presentation token involving a
credential issued by his issuer parameters. Issuer-driven revocation is always global in scope, meaning
that any presentation token MUST always be checked against the most recent revocation information
by the specified Revocation Authority, and that the Issuer denies any responsibility for revoked
credentials. Issuer-driven revocation is typically used when credentials have been compromised or
lost, or when the User is denied all further use of the credential. The Revocation Authority may
be managed by or be the same entity as the Issuer, or may be a separate entity. Issuer-driven
revocation is performed through a revocation handle, a dedicated unique identifier that the Issuer
embeds as an attribute in each issued credential (but which by default should not be revealed in a
presentation token). When the Issuer, a Verifier, or any third party wants to revoke a credential,
it must provide the revocation handle to the Revocation Authority. How the party requesting the
revocation learns the revocation handle is out of the scope of this document; this could for example
be done digitally by insisting in the presentation policy that the revocation handle be revealed to a
trusted Inspector, or physically by arresting the person and obtaining his or her identity card.

• In Verifier-driven revocation, the Verifier specifies as part of the presentation policy against which
Revocation Authority or Authorities (and revocation parameters) the presentation must additionally
be checked, i.e., on top of any Revocation Authorities specified by the Issuer in the issuer parameters.
The effect of the revocation is local to those Verifiers who explicitly specify the Revocation Authority
in their presentation policies, and does not affect presentations with other Verifiers. Verifier-driven
revocation is mainly useful for purpose-specific revocation (e.g., a no-fly list for terrorists) or
verifier-local revocation (e.g., a website excluding misbehaving users from its site). Note that if
unlinkability of presentation tokens is not a requirement, the latter effect can also be obtained by
using scope-exclusive pseudonyms. The Revocation Authority may be managed by or be the same
entity as the Verifier, or may be a separate entity. Verifier-driven revocation can be performed
based on any attribute, not just based on the revocation handle as for Issuer-driven revocation.
It is up to the Verifier and/or the Revocation Authority to choose an attribute that on the one
hand is sufficiently identifying to avoid false positives (e.g., the User’s first name probably doesn’t
suffice) and on the other hand will be known to the party likely to request the revocation of a
credential. Verifier-driven revocation is essentially banning credentials with blacklisted attribute
values from being accepted in a presentation, or restricting access to credentials with whitelisted
attribute values.

Page 21 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

2.8 Security and Privacy Features

Privacy-ABCs are a combination of several cryptographic building blocks, including signatures, pseudonyms,
zero-knowledge proofs, encryption, and revocation mechanisms. Properly defining the security and privacy
guarantees offered by such an encompassing framework is not an easy task. On a scientific level,
the ABC4Trust project has made great advances in this respect by creating the most comprehensive
formal security notions of Privacy-ABCs so far [CKL+14]. In this section, we avoid technical details of
cryptographic security notions, but rather give an intuitive description of the security and privacy features
that application developers can expect when working with Privacy-ABCs.

Roughly, one could summarize the security and privacy features of Privacy-ABCs as security, meaning
that users cannot create valid presentation tokens without having the proper underlying credentials and
keys, while privacy guarantees that presentation tokens do not reveal any more information than what
was intentionally disclosed. The various features of Privacy-ABCs deserve a more detailed discussion,
which we give in the following.

2.8.1 Basic Presentation

The most basic security guarantee is that credentials in a Privacy-ABC system are unforgeable. This
means that users, without access to an issuer’s secret key, cannot create new credentials or change attribute
values in the credentials they obtained from that issuer. Presentation tokens are unforgeable as well, in
the sense that in order to create a valid presentation token that discloses a number of attribute values
or proves a number (in)equality predicates, the user must possess credentials that satisfy the disclosed
criteria. Note that this unforgeability only holds as long as the verifier can obtain authentic copies of the
issuers’ public keys, e.g., by certifying issuers’ keys using an external PKI.

Presentation tokens can optionally “sign” a message that can contain a nonce, the intended verifier’s
identity, or any application-provided content. The information in that message is immutable: without
the necessary credentials to regenerate a complete presentation token, one cannot change the message
signed by the presentation token. The nonce in the signed message can be used to prevent replay attacks,
where an eavesdropper or cheating verifier reuses a presentation token generated by an honest user to
re-authenticate to the same or to a different verifier. The detection of the replay attack, i.e., of repeating
nonces, must happen in the application built on top of the ABCE. Including the verifier identity (e.g., its
URL or public key) in the signed message prevents man-in-the-middle attacks where a cheating verifier
relays presentation tokens from honest users to authenticate itself to a second verifier. The application
layer on the user’s side must check that the verifier identity included in the signed message matches the
application’s intended verifier.

In terms of privacy, presentation tokens only reveal the information that is explicitly disclosed by the
token. This means for example that presentation tokens reveal no information at all about the values of
hidden credential attributes. If the presentation token includes attribute predicates, the token reveals
nothing beyond the proof of the predicate, and in particular does not reveal the exact value of the involved
attributes. It also means that presentation tokens are unlinkable, in the sense that even a collusion of
issuers and verifiers cannot tell whether two presentation tokens were created by the same user or by
different users, and cannot trace the presentation back to the issuance of the credentials.

Of course, unlinkability is only guaranteed to the extent that neither the disclosed attributes themselves
nor the communication layer introduce trivial correlations between a user’s presentations. In particular,
it is important that presentation takes place over an anonymous communication channel, e.g., using
Tor onion routing, to avoid that the verifier can link visits by the same user through his IP address,
and by switching off cookies in the browser. Achieving complete unlinkability can be hard: intrinsic
hardware characteristics of the user’s device such as clock skews may be exploitable as unique device
fingerprints [KBC05], as may the list of plugins and fonts installed in the user’s browser [Eck10].

Page 22 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

2.8.2 Key Binding

A key-bound credential cannot be used in a presentation without knowledge of the user secret. If the
user secret is generated and stored on a trusted hardware device such as a smartcard, this means that
the creator of the presentation token must have access to the device at the time of presentation. The
presentation policy can optionally insist that different key-bound credentials or pseudonyms are bound to
the same secret key. In this case, the policy cannot be satisfied using credentials or pseudonyms that are
bound to or derived from different keys; the presentation token does not leak any information about the
value of the key, however.

2.8.3 Advanced Issuance

In an advance issuance protocol, the user essentially performs a presentation before proceeding with the
issuance. The same security and privacy properties hold for the issuance token as for normal presentation.
Additionally, the issuance can carry over attribute values and user secrets from credentials involved in the
presentation. In this case, the issuer is guaranteed that the attribute values or key in the newly issued
credential are equal to those of the original credentials used in the presentation, but he doesn’t see the
actual value. For self-claimed attribute values, there is no such guarantee; the issuer blindly signs any
attribute value that the user chooses. Jointly random attributes are guaranteed to be truly random,
meaning that the user cannot steer or bias the distribution in any way, but the issuer again doesn’t see
the actual value. The user always sees all attribute values in his credentials.

2.8.4 Pseudonyms

Verifiable and certified pseudonyms can be seen as public keys corresponding to a user’s secret key, with
the main difference that the user can generate arbitrarily many pseudonyms from a single user secret.
Pseudonyms are unlinkable, in the sense that verifiers cannot tell whether two pseudonyms originated
from the same user secret or from different user secrets. Knowledge of the underlying secret key is
required to create a valid presentation token involving a pseudonym. An attacker therefore cannot
successfully authenticate under a pseudonym that was established by an honest user. This also implies
that two honest users with independent user secrets will never accidentally generate the same pseudonym
(because otherwise an adversary could generate pseudonyms for his own user secret until he hits an already
established pseudonym).

Scope-exclusive pseudonyms are unique per scope and per user secret. Meaning, for a given scope
string and a given user secret, there is only one scope-exclusive pseudonym for which a valid presentation
token can be generated. Scope exclusive pseudonyms are unlinkable in the sense that, without knowing
the user secret, one cannot tell whether two scope-exclusive pseudonyms for different scope strings were
derived from the same or from different user secrets.

2.8.5 Inspection

Inspection allows the user to encrypt one or more attribute values under the public key of a trusted
inspector. The encryption is secure against chosen-ciphertext attacks, meaning that the encrypted attribute
values remain hidden even if the attribute values come from a small space or if the adversary can ask
the inspector to inspect other presentation tokens. The user must encrypt his real attribute values for
which he has valid credentials. Any attempt by the user to encrypt a different value, to encrypt under a
different public key, or to make the ciphertext undecryptable, will be detected by the verifier as an invalid
presentation token. Finally, the inspection grounds are clear to the user at the time of presentation and
are “signed” into the token, so that they cannot be modified afterwards. This prevents a malicious verifier
from requesting a presentation token to be inspected based on different grounds than those that the user
agreed with.

Page 23 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

2.8.6 Revocation

When a credential is used in a presentation token with issuer-driven or verifier-driven revocation, the
user merely proves that his revocation handle, respectively his combination of attribute values, was not
revoked when the revocation authority published the stated revocation information. No other information
about the value of the revocation handle or attributes is leaked. It is up to the verifier to check that
the revocation information used in the presentation token is indeed the latest one as published by the
revocation authority.

Revocation inherently opens up a subtle attack on user privacy by malicious revocation authorities.
Namely, a cheating authority can always arbitrarily revoke valid credentials, just to test whether these
credentials are involved in an ongoing presentation. The authority could even gradually “close in” on the
user during subsequent presentations. External precautions must be taken to prevent such an attack, for
example, by requiring that revocations must be logged on a public website or approved by an external
auditor.

The communication pattern between users, issuers, and the revocation authority differs considerably
for different revocation mechanisms. Some mechanisms follow a whitelist approach, where the revocation
authority keeps track of valid revocation handles (attributes) and removes those of revoked credentials.
These mechanisms usually require the revocation authority to be involved during credential issuance.
Other revocation mechanisms use blacklists, where the revocation authority only keeps track of revoked
values.

The revocation information may or may not hide the values of valid and revoked handles; this depends
on the actual revocation mechanism that is used. Also depending on the mechanism, users may need
to store non-revocation evidence with their credentials and update it before using it in a presentation.
Some mechanisms require individualized updates, meaning that the user has to identify himself towards
the revocation authority during the update. If the update occurs right before the presentation, this is
a potential privacy leak. It is therefore better to let users perform the update of their non-revocation
evidence at regular time intervals, rather than during presentation.

Page 24 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

3 Architecture

This Section briefly describes the architecture of Privacy-ABC systems, their components and the relations
among those and shows how to deploy the provided functionalities in the main usage scenarios.

Following standard design principles, our architecture uses a layered approach, where related functional-
ities are grouped into a common layer that provides simple interfaces towards other layers and components,
thereby abstracting the internal design and structure. As mentioned in Section 1, the architecture focuses
on the technology-independent components for Privacy-ABC systems, grouped in the ABCE layer, which
can be integrated in various application and deployment scenarios. That is, we do not propose a concrete
application-level deployment but provide generic interfaces to the ABCE layer that allow for a flexible
integration.

This Section assumes that the reader is already familiar with the general features and concepts of
Privacy-ABCs described in Section 2. It gives a high-level description of the Privacy-ABC-core architecture
and its components. Thus, it can also be seen as an introduction to Section 4 which describes the data
formats that are exchanged among Privacy-ABC entities and to Section 5 that presents the application
programming interfaces (API) of the ABCE layer components. Note that this Section already refers to
the external methods provided by the ABCE layer which are described in more detail in Section 5.

We start by describing the main functionalities of the different layers and components in Section 3.1.
We then describe how to integrate and use the ABCE layer along the main use-cases. That is, in Section
3.2.1 we provide an overview of the setup-functionalities that are provided by the ABCE layer. Section
3.2.2 is devoted to the presentation of tokens, thereby describing the steps that a User and Verifier have to
perform in order to create and to verify a presentation token. The process of the issuance of a credential
is described in Section 3.2.3, and can incorporate some of the presentation steps described in the previous
section. Section 3.2.4 then deals with the inspection process that can be used to reveal some previously
hidden attributes, and Section 3.2.5 describes the ABCE functionalities in the context of revocation.

3.1 Architectural Design

We now briefly describe the different layers in our architecture and give an overview of the internal
components of the ABCE layer. The latter is rather for informational purposes only, as the application
developer does not have to deal with those internals of the ABCE but only invoked the external APIs. A
simplified overview of our Privacy-ABC architecture is depicted in Figure 2, and a more detailed view of
the architecture on the user side is shown in Figure 3.

Figure 2: Architecture of a Privacy-ABC System.

Page 25 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

3.1.1 Application Layer

The application layer is actually not part of the Privacy-ABC architecture, but will operate on top of
that. Roughly, the application layer comprises all application-level components, which in the case of the
user-side deployment include the main application and the user interface for the identity selection (see
description below). The application layer of verifiers and issuers will also contain the policy store and the
access policy enforcement point.

UserInterface (User): The UserInterface displays the possible choices of pseudonyms and credentials
a user can apply in an issuance or presentation session. To this end, it shows a human-friendly
description of the credentials and presentation/issuance token, namely, the information that will be
revealed by presenting the token.

3.1.2 ABCE Layer

The ABCE layer is the core of our Privacy-ABC architecture and contains all technology-agnostic methods
and components for a Privacy-ABC system. That is, it contains, e.g., the methods to parse an obtained
issuance or presentation policy, perform the selection of applicable credentials for a given policy or to
trigger the mechanism-specific generation or verification of the cryptographic evidence. The ABCE layer
is invoked by the application-layer and calls out to the CryptoEngine to obtain the mechanism-specific
cryptographic data. To perform their tasks, the internal components can also make use of other external
components such as the KeyManager, Smartcard or the RevocationProxy. The user-side components
listed below are also depicted in Figure 3.

IssuanceManager (User, Issuer): The IssuanceManager receives the incoming issuance messages and
routes them either to the CryptoEngine or to the PolicyCredentialMatcher, depending on the content
of the message.

PolicyCredentialMatcher (User): The PolicyCredentialMatcher prepares a list of choices of creden-
tials, pseudonyms, and inspectors for the UserInterface, based on the policies it receives. When a
choice was made by the user, the PolicyCredentialMatcher then provides the CryptoEngine with the
description of the selected token and thereby starts the cryptographic proof generation.

PolicyTokenMatcher (Verifier): The PolicyTokenMatcher is responsible for checking if a token re-
ceived from the user matches a given policy. This verification is done in two main steps. First, it
checks whether the statements made in the token description satisfy the required statements in the
policy. If the policy requested the re-use of an established pseudonym, the PolicyTokenMatcher
calls on the TokenManager (described below) to look up if a presented pseudonym already exists.
When the first check succeeds, i.e., the token description matches the policy, it subsequently invokes
the CryptoEngine which then verifies the validity of the crypto evidence. If the verification of the
crypto evidence is successful as well, the PolicyTokenMatcher stores the token in a dedicated store
(if requested by the application).

Token Manager (Verifier, Issuer): The TokenManager stores the issuance and presentation tokens
(including the used pseudonyms) that were accepted by the issuer and the verifier respectively.
The issuer’s token manager also stores a "history" of the issuances, which consists of the list of
issuer-specified attributes (including the revocation handle) and the issuance token for all credentials
that were issued.

CredentialManager (User): The CredentialManager is responsible for storing all secret or privacy-
sensitive info of the user, i.e., credentials, pseudonyms, secrets. It also seamlessly integrates the
blobstore on the smartcards (via the smartcard manager) and is responsible for detecting smartcards
and getting the PIN of the card from the user. In the course of an advanced issuance or presentation
session the CredentialManager provides the PolicyCredentialMatcher with a list of all credentials
and pseudonyms currently available in the storage and on all active smartcards. During issuance
it further downloads and caches the default pictures associated with a credential, which are then
passed to the PolicyCredentialMatcher and are possibly displayed in a UserInterface.

Page 26 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

PrivateKeyStore (Issuer, RevocationAuthority, Inspector): The PrivateKeyStore is available for
the issuer, inspector and revocation authority and is responsible for storing private keys which are
generated within the ABCE.

Figure 3: Overview of the Privacy-ABC Architecture on the User Side

3.1.3 Crypto Layer

The crypto layer contains all the technology-specific methods needed in a credential life-cycle, e.g., to
generate and verify presentation/issuance tokens, inspect attributes or maintain the revocation informa-
tion. The ABC4Trust reference implementation of our Privacy-ABC framework also provides a generic
CryptoEngine that currently incorporates U-Prove and Idemix as the main credential component, and
also contains cryptographic realizations for all the additional features introduced in the previous Chapter.
For a more detailed description of the CryptoEngine we refer to Chapter 6.

CryptoEngine (User, Issuer, Verifier, Revocation Authority, Inspector): The CryptoEngine
is responsible for all cryptographic computations in the Privacy-ABC framework. For instance, it
creates pseudonyms, non-device-bound secrets, system parameters, key pairs and transforms the
presentation/issuance token description into a cryptographic proof or verifies a given cryptographic
proof. During issuance, the CryptoEngine of the issuer also interacts with the revocation authority
(via the revocation proxy) to generate a new revocation handle and a non-revocation evidence for
a new credential. Subsequently, the CryptoEngine also updates the non-revocation evidence of
revocable credentials. Furthermore, the CryptoEngine provides mechanism-dependent and human-
friendly proof descriptions which specify the information that is actually revealed in a presentation
or issuance token and which can be used in the identity selection.

Page 27 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

3.1.4 Storage & Communication Components

The Privacy-ABC architecture also contains several components that assist the work of the ABCE and
Crypto layer, e.g., by providing a trusted public-key store or secure storage (and computation) on an
external smartcard. As those components are rather use-case and technology-specific, they are described
as individual modules and can be customized depending on the concrete scenario in which Privacy-ABCs
are used.

KeyManager (User, Issuer, Verifier, Revocation Authority): The KeyManager is responsible
for storing trusted public keys, and if needed procuring these keys in an authenticated manner.

RevocationProxy (User, Issuer, Verifier, Revocation Authority): The RevocationProxy is re-
sponsible for communicating between the revocation authority and the user/issuer/verifier whenever
dealing with revocable credentials. It creates, parses and dispatches revocation messages.

SmartcardManager (User): The SmartcardManager is responsible for interacting with smartcards.
The smartcard manager is NOT responsible for detecting new cards or asking for the user’s PIN:
that is the credential manager role.

Smartcard (User, Inspector): The Smartcard stores the secret and sensitive data. It can be realized
as software or as a physical device, and provides two different interfaces. The DataInterface allows
one to store the credentials, inspector keys and other sensitive cryptographic objects in the card’s
memory (the so-called blobstore). The CryptoInterface provides cryptographic functionality for
issuance, presentation, and inspection that is related to a secret stored on the card.

3.2 Deployment of the Architecture

In this section we describe the high-level APIs provided by our framework, and describe their usage
along the main scenarios in a credential lifecycle. To focus on the main concepts of our architecture, the
following description concentrates on the most significant methods and omits some convenience functions
as well as simplifies the behaviour of some of the described methods. A more detailed description of the
API is given in Section 5, after we introduce the data formats.

The ABCE exposes technology-agnostic methods to the application developer that allow him to
implement all the features introduced in the previous Chapter. In summary, those methods comprise the
generation of cryptographic parameters and keys, import of these parameters, generation and verification
of presentation tokens, issuance of credentials, inspection of tokens, and revocation of credentials.

3.2.1 Setup and Storage

To equip all parties in a Privacy-ABC system with the necessary key material, the API provides several
methods for generating public and/or private cryptographic parameters.

However, before any entity can create its parameters, the global system parameters have to be generated.
This is done by invoking the method generateSystemParameters with the desired security level as the input.
The method then generates the global system parameters which define the security parameters (e.g., size
of secrets, size of moduli, size of group orders, prime probability), the range of values the attributes can
take, and the cryptographic parameters for the pseudonyms. To ensure interoperability, every user, issuer,
inspector, and revocation authority in the system must use the same system parameters for generating
their cryptographic keys and parameters. To achieve this, for example, a trusted authority such as a
standardization body could generate and publish system parameters for various security levels, which are
then used by all parties. Note that the system parameters specify the security level that is to be used by
all parties.

For each party, the ABCE then offers a dedicated method to create the corresponding key material.
Thereby, the ABCE stores the private parameters in the trusted storage and outputs the public part of
the parameters.

Page 28 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Issuer Parameters: When generating issuer parameters, one must (in addition to the system parameters)
specify the concrete technology and the maximal number of attributes that can appear in credential
specifications that are used in conjunction with these issuer parameters. That number is required as
it can influence the issuer parameters, e.g., the issuer parameters of Idemix and U-Prove will contain
a dedicated generator for each attribute. Further, if the issuer supports issuer-driven revocation, the
method also needs the parameters of the corresponding revocation authority as additional input.

Revocation Authority Parameters: For the generation of the revocation authority parameters, one
must specify the locations where users and verifiers can retrieve all the necessary information to
obtain or update their state of revocation information and non-revocation evidence. Those comprise
the location to obtain the latest revocation information, the location of the initial non-revocation
evidence of newly issued credentials, and the location where users can obtain updates to their
non-revocation evidence.

User Secret Keys: On the user side, the ABCE allows the creation of private keys to which subsequently
credentials can be bound. We note that a user may generate multiple keys by calling this method
multiple times. Our reference implementation also supports the storage of private keys on external
devices such as smartcards.

The ABCE further provides APIs to store public parameters of other parties. As usual, it must be
guaranteed that only authenticated parameters are imported and that the public key storage is kept
up-to-date. To later retrieve public parameters from the ABCE again, they are stored together with a
UID as unique identifier. Similarly, the ABCE includes methods to import credential specifications which
define a particular type of credential.

The main methods to setup and maintain a credential system are listed in Table 1. Values in brackets
denote that they are optional, i.e., can also be set to null.

Page 29 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Global & Storage APIs
generateSystemParameters

input: int securityLevel
output: SystemParameters

storeSystemParameters
input: SystemParameters
output: boolean success

storeIssuerParameters
input: IssuerParameters
output: boolean success

storeInspectorParameters
input: InspectorParameters
output: boolean success

storeRevocationAuthorityParameters
input: RevocationAuthorityParameters
output: boolean success

storeCredentialSpecification
input: CredentialSpecification
output: boolean success

Issuer
generateIssuerParameters

input: URI id, SystemParameters, URI technology, int maximalNumberOfAttributes, [URI
revocationAuthorityId]

output: IssuerParameters

Inspector
generateInspectorParameters

input: URI id, SystemParameters, URI technology
output: InspectorParameters

Revocation Authority
generateRevocationAuthorityParameters

input: URI id, SystemParameters, URI technology, URI revocationInfoLocation, URI non-
RevocationEvidenceLocation, URI nonRevocationUpdateLocation

output: RevocationAuthorityParameters

User
generateUserSecretKey

input: SystemParameters
output: URI id

Table 1: ABCE Interfaces for Setup and Storage

3.2.2 Presentation of a Token

The process of presentation is triggered when the application on the user’s side contacts a verifier to
request access to a resource (Figure 4 – Step 1). Having received the request, the verifier responds with
one or more presentation policies, which are aggregated in a PresentationPolicyAlternatives object. Recall
that a presentation policy defines what information a user has to reveal to the verifier in order to gain
access to the requested resource. For example, it describes which credentials from which trusted issuers are

Page 30 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

required, which attributes from those credentials have to be revealed, or which predicates the attributes
have to fulfill. A detailed specification of a presentation policy is given in Section 4.

Figure 4: Presentation of a Token (Application Level)

Upon receiving the policy (Figure 4 – Step 2.a), the application on the user’s side invokes the
Privacy-ABC system first with the createIdentitySelectorArguments method on input of the received
presentation policy alternatives (Figure 4 – Step 2.b). The Privacy-ABC system then determines whether
the user has the necessary credentials and pseudonyms to create a token that satisfies the policy. Based on
that investigation, the method returns either an object of type UiPresentationArguments which describes
all the possible combinations of the user’s credentials and pseudonyms that satisfy the policy, or an error
message indicating that the policy could not be satisfied. The user’s application layer then performs an
identity selection, that is, it invokes a component (such as a graphical user interface) that supports the
user in choosing her preferred combination of credentials and pseudonyms and to obtain the user’s consent
in revealing her personal data. The user’s choice is recorded in an object of type UiPresentationReturn
and passed to the createPresentationToken method. The Privacy-ABC system then invokes the Crypto
Engine to obtain the corresponding cryptographic evidence for the selected token description. The method
finally outputs a presentation token (Figure 4 – Step 3.a), consisting of the presentation token description
and the crypto evidence, according to the user’s choice. Afterwards, the presentation token is sent to the
verifier (Figure 4 – Step 3.b).

When the verifier receives the presentation token from the user, it passes it to its ABCE layer with
the method verifyTokenAgainstPolicy (Figure 4 – Step 2.b+3.c). This method verifies whether the
statements made in the presentation token satisfy the corresponding presentation policy alternatives.
The token verification is done in two steps. First, it is determined whether the statements made in the
presentation token description logically satisfy the required statements in the corresponding presentation
policy. Second, the validity of the cryptographic evidence for the given token description is verified. If
both checks succeed, the ABCE outputs a boolean indicating the correct verification and, if requested,
stores the presentation token in a dedicated token store, which allows the verifier to subsequently recognize
established pseudonyms or inspect tokens.

Page 31 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

The ABCE interfaces available for the user and verifier in the context of generating and verifying a
presentation token are summarized in Table 2.

User
createIdentitySelectorArguments

input: PresentationPolicyAlternatives
output: UiPresentationArguments

createPresentationToken
input: UiPresentationReturn
output: PresentationToken

Verifier
verifyTokenAgainstPolicy

input: PresentationToken, PresentationPolicyAlternatives, boolean storeToken
output: boolean isCorrect, [URI tokenId]

getPresentationToken
input: URI tokenId
output: PresentationToken

Table 2: ABCE Interfaces for Token Presentation and Verification

3.2.3 Issuance of a Credential

Generally speaking, issuance is an interactive multi-round protocol between a user and an issuer, at the
end of which the user obtains a credential. In fact, issuance can be seen as a special case of a standard
resource request, where the resource is a new credential that the user wants to obtain. Thus, to handle such
a credential request, the Privacy-ABC framework might invoke the same components and procedures as in
the presentation scenario described above. However, depending on the scenario, the issuance transaction
involves additional components to handle the case where the user wishes to (blindly) carry over her
attributes or her secret key from one of her existing credentials to the new credential.

To start an issuance transaction, the user first authenticates towards the issuer (Figure 5 – Step 1) and
indicates the credential type she wishes to obtain (Figure 5 – Step 2). Note that the exact details of the
initial authentication are outside the scope of the Privacy-ABC framework and, for example, can be done
using traditional means such as username and password. The issuer triggers the issuance of a credential
through the API when receiving a correct credential request from a user. As described in Section 2.6,
there are two variants of issuance: simple issuance and advanced issuance, where the latter applies if
attributes or a key need to be carried over from existing credentials.

3.2.3.1 Simple Issuance In the simple issuance variant, an issuer issues the user a credential that is
unrelated to any existing credentials or pseudonyms already owned by the user. In such a setting, the
issuer first invokes the initIssuanceProtocol method of the ABCE with the set of attributes that shall
be certified in the new credential, and with an IssuancePolicy that merely contains the identifiers of the
credential specification and the issuer parameters of the credential that is to be issued (Figure 5 – Step 3).
This call initiates the cryptographic issuance protocol by invoking the Crypto Engine. The method returns
an IssuanceMessage containing cryptographic data (the format of the data is specific to the technology
of the credential to be issued) and a reference that uniquely identifies the instance of the corresponding
issuance protocol. The returned issuance message is then sent by the issuer to the user.

Upon receiving an issuance message, both the user and the issuer pass the message to their Privacy-
ABC system using the issuanceProtocolStep method (Figure 5 – Step 4). If the output of that method
in turn contains an issuance message, that message is sent to the other party until the method on the

Page 32 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Figure 5: Issuance of a Credential (Application Level)

user’s side completed the credential generation. At the end of a successful issuance protocol, the user’s
Privacy-ABC system stores the new credential in the local credential store and returns the description of
the credential to the user.

3.2.3.2 Advanced Issuance In the advanced issuance variant, the information embedded in the
newly issued credential can be blindly carried over from existing credentials and pseudonyms that are
already owned by the user. To this end, the issuance protocol is preceded by the generation and verification
of an issuance token, which is generated on the basis of an issuance policy sent to the user. More precisely,
the issuer triggers an advanced issuance transaction by invoking the initIssuanceProtocol method on
input of an issuance policy and the set of known user attributes that shall be certified in the new credential
(Figure 5 – Step 3). If the issuance policy is non-trivial, i.e., requires the user to present at least one
credential or one pseudonym, then advanced issuance is performed, otherwise a simple issuance protocol
is started. The method returns an issuance message (containing the issuance policy) which must then be
sent to the user.

The user in turn invokes the method issuanceProtocolStep with the received message. The user’s
Privacy-ABC system recognizes that this is an advanced issuance scenario, and subsequently starts
preparing an issuance token. This process is similar to the generation of a presentation token in that the
method’s output contains an object of type UiIssuanceArguments for the user to perform an identity
selection. The method then expects the user’s response in form of a UiIssuanceReturn object. Finally,
based on the user’s choice, her Privacy-ABC system (with the help of the Crypto Engine) generates an
IssuanceToken, which includes additional cryptographic data needed for the subsequent issuance protocol.
The issuance token is wrapped in an issuance message, which the user then forwards to the issuer (Figure
5 – Step 4).

Page 33 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

As for simple issuance, the issuer’s issuanceProtocolStep method is then called on input of the incoming
issuance message from the user. The Privacy-ABC system then verifies the issuance token contained
in the message with respect to the issuance policy (using similar methods as for the verification of a
presentation token). If the verification succeeds, the cryptographic issuance protocol is started, again with
the help of the Crypto Engine. The method outputs an issuance message containing cryptographic data
depending on the technology of the credential. The issuer then sends the returned issuance message to
the user (Figure 5 – Step 4).

Whenever the user or the issuer receives an issuance message, he invokes his local issuanceProtocolStep
method. The output is then either another issuance message that must be sent to the other party, or an
indication of the completion of the protocol. At the end of the protocol, the user’s Privacy-ABC system
stores the obtained credential and returns a description of that credential to the user.

Overall, the issuance-related APIs of the ABCE are summarized in Table 3.

User
issuanceProtocolStep

input: IssuanceMessage
output: IssuanceMessage, CredentialDescription, [UiIssuanceArguments]

issuanceProtocolStep
input: UiIssuanceReturn
output: IssuanceMessage

Issuer
initIssuanceProtocol

input: IssuancePolicy, List<Attribute> issuerSpecifiedAttributes
output: IssuanceMessage, boolean isLastMessage

issuanceProtocolStep
input: IssuanceMessage
output: IssuanceMessage, boolean isLastMessage

extractIssuanceToken
input: IssuanceMessage
output: IssuanceToken

Table 3: ABCE Interfaces for Credential Issuance

3.2.4 Inspection

As described in detail in Section 2.5, the anonymity that is usually provided by Privacy-ABCs can be lifted
through inspection if the policy allows it. In particular, if a policy mandates attributes to be inspectable,
the user prepares her presentation tokens in a special way: the inspectable attributes are not revealed
to the verifier, but are verifiably encrypted in the token under the public key of a trusted inspector and
inseparabely tied to some inspection grounds.

In case the event specified in the inspection grounds occurs, the inspection requestor (e.g., the verifier)
contacts the inspector to request the de-anonymization of a presentation or issuance token. To do that, he
sends the token (which he can retrieve, e.g., with the help of the getPresentationToken method described
in Table 2) and the (non-cryptographic) evidence that the inspection grounds are fulfilled to the inspector.
If the inspector determines by means of the evidence that these grounds are indeed fulfilled, he invokes
the inspect method to decrypt the inspectable attributes in question (see Table 4).

Page 34 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

3.2.5 Revocation

Our framework also supports revocation of credentials, thereby distinguishing whether a credential may
need to be revoked either globally (issuer-driven revocation) or for a specific context (verifier-driven
revocation) (see Section 2.7 for details). To revoke a credential globally, the revocation authority calls the
revoke method on input of the credential’s revocation handle, which must be handed to the revocation
authority by the issuer (see Table 4). For verifier-driven revocation, a conjunction of attributes can be
revoked by calling the same method. In the latter case, all credentials that contain the combination of
attribute values specified in the list will be unusable to satisfy the presentation policy. The revocation
authority typically knows the attribute values to revoke because they were either revealed in a former
presentation token, or were decrypted by an inspector.

All entities that deal with revocable credentials must ensure that their respective revocation information
is up-to-date. This is handled transparently by the ABCE which – if required – will internally contact
the corresponding revocation authority through the Revocation Proxy and obtain the necessary updates
or information. For instance, issuers have to contact their revocation authority during issuance in order
to obtain a fresh revocation handle. On the verifier side, such a process is needed to guarantee that the
verifier uses the latest revocation information from the revocation authority in order to correctly detect
revoked credentials.

Similarly, users have to keep the non-revocation evidence of their credentials up-to-date. The Privacy-
ABC system of a user should allow her to configure whether to contact the revocation authority only
shortly prior to presenting a credential, or whether to perform proactive updates at regular intervals.
The latter approach has the advantage that presentation is faster and that the revocation authority is
not involved each single time a user wants to present her credential(s). Depending on the revocation
technology, these updates may even fully preserve the anonymity of the user.

Inspector
inspect

input: PresentationToken, URI credentialAlias, URI attributeType
output: Attribute

inspect
input: IssuanceToken, URI credentialAlias, URI attributeType
output: Attribute

Revocation Authority
revoke

input: URI revocationAuthorityId, List<Attribute> toRevoke
output: —

Table 4: ABCE Interfaces for Inspection and Revocation

Page 35 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

4 ABC4Trust Protocol Specification

Given the multitude of distributed entities involved in a full-fledged Privacy-ABC system, the commu-
nication formats through which these entities interact must be fixed. Rather than profiling an existing
standard format for identity management protocols such as SAML, WS-Trust, or OpenID, we felt that
the many unique features of Privacy-ABCs were more suitably addressed by defining a dedicated format.
In particular, existing standards do not support typical Privacy-ABC features such as pseudonyms,
inspection, privacy-enhanced revocation, or advanced issuance protocols. In Chapter 9, we discuss how
our Privacy-ABC infrastructure could be integrated with a number of existing frameworks.

This chapter provides the specification for data artifacts exchanged during the issuance, presentation,
revocation, and inspection of privacy-enhancing attribute-based credentials for use in the ABC4Trust
project. Our specification separates the mechanism-independent information conveyed by the artifacts
from the opaque mechanism-specific cryptographic data. This specification only defines the format for the
mechanism-independent information. It provides anchor points for where instantiating technologies, in
particular, U-Prove and Identity Mixer, can insert mechanism-specific data, but does not fix standard
formats for this data.

For the specification we use XML notation in the spirit of XML Schema, but refrain from providing a
full-fledged XML Schema specification within this document for the sake of readability; we do, however,
make available a separate XML schema file for the artifacts defined here3. Although the artifacts are
defined in XML, one could create a profile using a different encoding (ASN.1, JSON, etc.) See the
corresponding schema file for more details.

We start in Section 4.1 with introducing the terminology and notation used throughout this chapter.
Section 4.2 then provides the artifacts for the setup of the different Privacy-ABC entities, which includes
e.g., the description of the credential type and the public parameters of an Issuer and Inspector. In Section
4.3 the specifications for all artifacts related to revocation are given. For the presentation of a token, the
corresponding specifications of a presentation policy and a presentation token are introduced in Section
4.4. Section 4.5 is then dedicated to the Issuance of a credential and provides artifacts for the issuance
policy and issuance token. Section 4.6 introduces the data formats that are sent to and expected from
(graphical) user interfaces. Finally, Section 4.7 describes some additional XML schemas used by the web
services API.

4.1 Terminology and Notation

4.1.1 Notational Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “RECOM-
MENDED”, and “MAY” in this document are to be interpreted as described in [Bra97].

This specification uses the following syntax to define outlines for XML data:

• The syntax appears as an XML instance, but values in italics indicate data types instead of literal
values.

• Characters are appended to elements and attributes to indicate cardinality:
“?” (0 or 1)
“*” (0 or more)
“+” (1 or more)

• The character “|” is used to indicate a choice between elements.

• The characters “(“ and “)” are used to indicate that contained items are to be treated as a group
with respect to cardinality or choice.

• XML namespace prefixes (see Table 5) are used to indicate the namespace of the element being
defined.

3Available under https://abc4trust.eu/download/xml/ABC4Trust_schema_H2.1.xsd

Page 36 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

• XML elements and Attributes defined by this specification are referred to in the text of this document
using XPath 1.0 expressions.

4.1.2 Namespaces

The base XML namespace URI used by the definitions in this document is as follows:

Table 5: XML namespaces
Prefix XML namespace Specification
xs http://www.w3.org/2001/XMLSchema [XMLSchema2]
abc http://abc4trust.eu/wp2/abcschemav1.0 This document

4.2 Setup

4.2.1 Credential Specification

The credential specification describes the contents of the credentials. It can be created by the issuer or by
any external authority so that multiple issuers can issue credentials of the same specification. How this
artifact is protected (authenticated) is application specific; e.g., it could be included in a XML-signed
document or provided as part of some metadata retrievable from a trusted source.

1 <abc:CredentialSpecification Version="1.0" KeyBinding="xs:boolean"
2 Revocable="xs:boolean">
3 <abc:SpecificationUID>xs:anyURI</abc:SpecificationUID>
4 <abc:numericalId>xs:integer</abc:numericalId>?
5 <abc:FriendlyCredentialName xml:lang="xs:language"/>∗
6 <abc:DefaultImageReference>xs:anyURI</abc:DefaultImageReference>?
7 <abc:AttributeDescriptions MaxLength="xs:unsignedInt">
8 <abc:AttributeDescription Type="xs:anyURI"
9 DataType="xs:anyURI" Encoding="xs:anyURI">

10 <abc:FriendlyAttributeName lang="xs:language">xs:string</abc:FriendlyAttributeName>∗
11 <abc:AllowedValue>...</abc:AllowedValue>∗
12 </abc:AttributeDescription>∗
13 </abc:AttributeDescriptions>

The following describes the attributes and elements listed in the schema outlined above:

/abc:CredentialSpecification

This element contains the credential specification defining the contents of issued credentials adhering to
this specification.

/abc:CredentialSpecification/@Version

The version attribute has been made optional. It will be removed but currently is kept for backwards
compatibility. The version information should be taken from the schema itself rather than from this field.
For the current version of the schema, it must be set to "1.0".

/abc:CredentialSpecification/@KeyBinding

This attribute indicates whether credentials adhering to this specification must be bound to a secret key.
See Section 2.3 for more information on key binding.

/abc:CredentialSpecification/@Revocable

This attribute indicates whether credentials adhering to this specification are revocable
or not. If the Revocable attribute is set to true, then this credential specifica-
tion MUST contain a dedicated attribute for the revocation handle with attribute type
http://abc4trust.eu/wp2/abcschemav1.0/revocationhandle. The data type and encoding mech-
anism for the revocation handle are defined by the cryptographic mechanism used for revocation.

Page 37 of 148 Public Final version 1.0

http://www.w3.org/2001/XMLSchema
http://abc4trust.eu/wp2/abcschemav1.0

ABC4Trust Deliverable D2.2

The revocation handle is automatically assigned a unique value by the issuance algorithm, possibly
involving a communication step with the Revocation Authority. Even though there are no syntactical
restrictions imposing this, presentation policies SHOULD NOT request to reveal the value of the revocation
handle, as doing so enables Verifiers to link presentations tokens generated with the same credential.
If necessary, inspection can be used to only reveal the value of the revocation handle under specific
circumstances.

/abc:CredentialSpecification/abc:SpecificationUID

This element contains a URI that uniquely identifies the credential specification.

/abc:CredentialSpecification/abc:NumericalId

This element contains an optional numerical identifier of the credential specification, which must be unique
across the system. This numerical identifier will be included as a hidden attribute in all credentials that
use this specification; this makes it unambiguous which credential specification was used to issue the
credential, especially if the same issuer parameters are used with multiple credential specifications. The
range of that numerical identifier is the same as that of an unsigned integer attribute. If this field is left
blank, a cryptographic hash of the credential specification XML is used instead as numerical identifier.

/abc:CredentialSpecification/abc:FriendlyCredentialName

This optional element provides a friendly textual name for the credential. The content of this element
MUST be localized in a specific language.

/abc:CredentialSpecification/abc:FriendlyCredentialName/@lang

A required language identifier, using the language codes specified in [Alv01], in which the content of
abc:FriendlyCredentialName element have been localized.

/abc:CredentialSpecification/abc:DefaultImageReference

This optional element contains a reference where the default image can be obtained for credentials issued
according to this credential specification.

When implementing a Privacy-ABC system, downloading images from the identity providers should be
handled carefully. The reference to the external image resource must not be used every time the credential
is presented. To avoid linkability when using the credential, the corresponding image must be downloaded
and stored locally at the user’s side during the issuance.

/abc:CredentialSpecification/abc:AttributeDescriptions

This element contains the descriptions of the attributes issued using this specification, encoded in order in
the n child elements. It is empty if n=0, i.e., if abc:AttributeDescriptions has no child elements.

.../abc:AttributeDescriptions/abc:AttributeDescription

This element contains the description of one credential attribute.

.../abc:AttributeDescriptions/abc:AttributeDescription/@MaxLength

This attribute specifies the maximal length in bits of the integers to which attribute values are mapped
using the encoding function. The keylength of any Issuer Parameters used to issue credentials adhering to
this credential specification must be large enough so that attributes of the bitlength specified here can be
supported. It is up to each specific credential mechanism to describe which keylength supports which
attribute bitlength.

.../abc:AttributeDescriptions/abc:AttributeDescription/@Type

This attribute contains the unique identifier of an attribute type encoded in credentials adhering to this
specification. The attribute type is a URI, to which a semantic is associated by the definition of the
attribute type. The definition of attribute types is outside the scope of this document; we refer to Section
7.5 in [Sta09a] for examples. The attribute type (e.g., http://example.com/firstname) is not to be
confused with the data type (e.g., xs:string) that is specified by the DataType attribute.

.../abc:AttributeDescriptions/abc:AttributeDescription/@DataType

Page 38 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

This attribute contains the data type of the credential attribute. The supported attribute data types
are the following subset of XML Schema data types. We refer to the XML Schema specification
(http://www.w3.org/TR/xmlschema-2) for more information on these data types.

• http://www.w3.org/2001/XMLSchema#string

• http://www.w3.org/2001/XMLSchema#anyURI

• http://www.w3.org/2001/XMLSchema#date

• http://www.w3.org/2001/XMLSchema#time

• http://www.w3.org/2001/XMLSchema#dateTime

• http://www.w3.org/2001/XMLSchema#integer

• http://www.w3.org/2001/XMLSchema#boolean

When specifying values for attributes of these types, the following additional restrictions must be adhered
to:

• Values of type xs:date MUST NOT contain a timezone

• Values of type xs:time MUST NOT contain a timezone

• Values of type xs:dateTime MUST contain a timezone

.../abc:AttributeDescriptions/abc:AttributeDescription/@Encoding

To be embedded in a Privacy-ABC, credential attribute values must typically be mapped to integers
of a fixed length indicated by the AttributeDescription/@MaxLength attribute. The Encoding XML
attribute specifies how the value of this credential attribute is mapped to such an integer.

Each data type has one or more possible encoding algorithms. The encoding used may influence which
values can be encoded, whether inspection can be used for this attribute, and which predicates can be
proved over the attribute values (see Section 4.4.1). In order to apply a predicate over multiple credential
attributes, the credential attributes MUST have the same encoding.

The following is a list of supported encodings and their respective properties. Recommendations for
typical usage are included as comments.

• Encoding: urn:abc4trust:1.0:encoding:string:sha-256
Data type: http://www.w3.org/2001/XMLSchema#string
Restrictions: none
Inspectable: no (hash value only)
Supported predicates:
urn:oasis:names:tc:xacml:1.0:function:string-equal
urn:abc4trust:1.0:function:string-not-equal
Comments: Best suited for strings of arbitrary lengths that are unlikely to be used for inspection.

• Encoding: urn:abc4trust:1.0:encoding:string:utf-8
Data type: http://www.w3.org/2001/XMLSchema#string
Restrictions: the UTF-8 encoded string must be shorter than @MaxLength — 8 bits or @MaxLength/8
— 1 bytes
Inspectable: yes
Supported predicates:
urn:oasis:names:tc:xacml:1.0:function:string-equal
urn:abc4trust:1.0:function:string-not-equal
Comments: Best suited for short strings where the possibility to use inspection should be kept open.
For long strings that are likely to require inspection, please consider splitting up the attribute into
multiple attributes with this encoding.

• Encoding: urn:abc4trust:1.0:encoding:string:prime
Data type: http://www.w3.org/2001/XMLSchema#string
Restrictions: Can only be used for attributes where the value range is restricted by a list of

Page 39 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

.../abc:AttributeDescription/abc:AllowedValueelements.
Inspectable: yes
Supported predicates:
urn:oasis:names:tc:xacml:1.0:function:string-equal
urn:abc4trust:1.0:function:string-not-equal
urn:abc4trust:1.0:function:string-equal-one-of
Comments: Best choice for attributes with a limited value range where presentation policies are
likely to request showing that the attribute value is one of a given list of strings without revealing
the exact value.

• Encoding: urn:abc4trust:1.0:encoding:anyUri:sha-256
Data type: http://www.w3.org/2001/XMLSchema#anyURI
Restrictions: none
Inspectable: no (hash value only)
Supported predicates:
urn:oasis:names:tc:xacml:1.0:function:anyURI-equal
urn:abc4trust:1.0:function:anyURI-not-equal
Comments: Best suited for URIs of arbitrary lengths that are unlikely to be used for inspection.

• Encoding: urn:abc4trust:1.0:encoding:anyUri:utf-8
Data type: http://www.w3.org/2001/XMLSchema#anyURI
Restrictions: shorter than @MaxLength bytes
Inspectable: yes
Supported predicates:
urn:oasis:names:tc:xacml:1.0:function:anyURI-equal
urn:abc4trust:1.0:function:anyURI-not-equal
Comments: Best suited for short URIs where the possibility to use inspection should be kept open.
For long URIs that are likely to require inspection, please consider splitting up the attribute into
multiple attributes with this encoding.

• Encoding: urn:abc4trust:1.0:encoding:anyURI:prime
Data type: http://www.w3.org/2001/XMLSchema#string
Restrictions: Can only be used for attributes where the value range is restricted by a list of
.../abc:AttributeDescription/abc:AllowedValue elements.
Inspectable: yes
Supported predicates:
urn:oasis:names:tc:xacml:1.0:function:anyURI-equal
urn:abc4trust:1.0:function:anyURI-not-equal
urn:abc4trust:1.0:function:anyURI-equal-one-of
Comments: Best choice for attributes with a limited value range where presentation policies are
likely to request showing that the attribute value is one of a given list of URIs without revealing the
exact value.

• Encoding: urn:abc4trust:1.0:encoding:dateTime:unix:signed
Data type: http://www.w3.org/2001/XMLSchema#dateTime
Restrictions: none
Inspectable: yes
Supported predicates:
urn:oasis:names:tc:xacml:1.0:function:dateTime-equal
urn:oasis:names:tc:xacml:1.0:function:dateTime-greater-than
urn:oasis:names:tc:xacml:1.0:function:dateTime-greater-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:dateTime-less-than
urn:oasis:names:tc:xacml:1.0:function:dateTime-less-than-or-equal
urn:abc4trust:1.0:function:dateTime-not-equal
Comments: Good default choice for times that can be far in the past and/or future. Greater-than
and less-than predicates may be slightly less efficient using this encoding.

Page 40 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

• Encoding: urn:abc4trust:1.0:encoding:dateTime:unix:unsigned
Data type: http://www.w3.org/2001/XMLSchema#dateTime
Restrictions: since 1970
Inspectable: yes
Supported predicates:
urn:oasis:names:tc:xacml:1.0:function:dateTime-equal
urn:oasis:names:tc:xacml:1.0:function:dateTime-greater-than
urn:oasis:names:tc:xacml:1.0:function:dateTime-greater-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:dateTime-less-than
urn:oasis:names:tc:xacml:1.0:function:dateTime-less-than-or-equal
urn:abc4trust:1.0:function:dateTime-not-equal
Comments: Best choice for times after 1970 that are likely to be used in combination with greather-
than or less-than predicates.

• Encoding: urn:abc4trust:1.0:encoding:dateTime:prime
Data type: http://www.w3.org/2001/XMLSchema#dateTime
Restrictions: Can only be used for attributes where the value range is restricted by a list of
.../abc:AttributeDescription/abc:AllowedValue elements.
Inspectable: yes
Supported predicates:
urn:oasis:names:tc:xacml:1.0:function:dateTime-equal
urn:abc4trust:1.0:function:dateTime-not-equal
urn:abc4trust:1.0:function:dateTime-equal-one of
Comments: Best choice for attributes with a limited value range where presentation policies are
likely to request showing that the attribute value is one of a given list of times without revealing the
exact value.

• Encoding:urn:abc4trust:1.0:encoding:date:unix:signed
Data type: http://www.w3.org/2001/XMLSchema#date
Restrictions: none
Inspectable: yes
Supported predicates:
urn:oasis:names:tc:xacml:1.0:function:date-equal
urn:oasis:names:tc:xacml:1.0:function:date-greater-than
urn:oasis:names:tc:xacml:1.0:function:date-greater-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:date-less-than
urn:oasis:names:tc:xacml:1.0:function:date-less-than-or-equal
urn:abc4trust:1.0:function:date-not-equal
Comments: Good default choice for dates that can be far in the past and/or future. Greater-than
and less-than predicates may be less efficient using this encoding.

• Encoding: urn:abc4trust:1.0:encoding:date:unix:unsigned
Data type: http://www.w3.org/2001/XMLSchema#date
Restrictions: since 1970
Inspectable: yes
Supported predicates:
urn:oasis:names:tc:xacml:1.0:function:date-equal
urn:oasis:names:tc:xacml:1.0:function:date-greater-than
urn:oasis:names:tc:xacml:1.0:function:date-greater-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:date-less-than
urn:oasis:names:tc:xacml:1.0:function:date-less-than-or-equal
urn:abc4trust:1.0:function:date-not-equal
Comments: Best choice for times after 1970 that are likely to be used in combination with greather-
than or less-than predicates.

Page 41 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

• Encoding: urn:abc4trust:1.0:encoding:date:since1870:unsigned
Data type: http://www.w3.org/2001/XMLSchema#date
Restrictions: since 1870
Inspectable: yes
Supported predicates:
urn:oasis:names:tc:xacml:1.0:function:date-equal
urn:oasis:names:tc:xacml:1.0:function:date-greater-than
urn:oasis:names:tc:xacml:1.0:function:date-greater-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:date-less-than
urn:oasis:names:tc:xacml:1.0:function:date-less-than-or-equal
urn:abc4trust:1.0:function:date-not-equal
Comments: Best choice for birth dates, which are likely to fall after 1870 but are likely to require
efficient greather-than or less-than predicates.

• Encoding:urn:abc4trust:1.0:encoding:date:since2010:unsigned
Data type: http://www.w3.org/2001/XMLSchema#date
Restrictions: since 2010
Inspectable: yes
Supported predicates:
urn:oasis:names:tc:xacml:1.0:function:date-equal
urn:oasis:names:tc:xacml:1.0:function:date-greater-than
urn:oasis:names:tc:xacml:1.0:function:date-greater-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:date-less-than
urn:oasis:names:tc:xacml:1.0:function:date-less-than-or-equal
urn:abc4trust:1.0:function:date-not-equal
Comments: Best choice for expiration dates, which are likely to fall after 2010 but are likely to
require efficient greather-than or less-than predicates.

• Encoding: urn:abc4trust:1.0:encoding:date:prime
Data type:http://www.w3.org/2001/XMLSchema#date
Restrictions: Can only be used for attributes where the value range is restricted by a list of
.../abc:AttributeDescription/abc:AllowedValue elements.
Inspectable: yes
Supported predicates:
urn:oasis:names:tc:xacml:1.0:function:date-equal
urn:abc4trust:1.0:function:date-not-equal
urn:abc4trust:1.0:function:date-equal-one of
Comments: Best choice for attributes with a limited value range where presentation policies are
likely to request showing that the attribute value is one of a given list of dates without revealing the
exact value.

• Encoding: urn:abc4trust:1.0:encoding:boolean:unsigned
Data type: http://www.w3.org/2001/XMLSchema#boolean
Restrictions: none
Inspectable: yes
Supported predicates:
urn:oasis:names:tc:xacml:1.0:function:boolean-equal
urn:abc4trust:1.0:function:boolean-not-equal

• Encoding: urn:abc4trust:1.0:encoding:integer:unsigned
Data type: http://www.w3.org/2001/XMLSchema#integer
Restrictions: positive (including zero)
Inspectable: yes
Supported predicates:
urn:oasis:names:tc:xacml:1.0:function:integer-equal
urn:oasis:names:tc:xacml:1.0:function:integer-greater-than

Page 42 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

urn:oasis:names:tc:xacml:1.0:function:integer-greater-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:integer-less-than
urn:oasis:names:tc:xacml:1.0:function:integer-less-than-or-equal
urn:abc4trust:1.0:function:integer-not-equal
Comments: Best for integers that cannot take negative values.

• Encoding: urn:abc4trust:1.0:encoding:integer:signed
Data type: http://www.w3.org/2001/XMLSchema#integer
Restrictions: none
Inspectable: yes
Supported predicates:
urn:oasis:names:tc:xacml:1.0:function:integer-equal
urn:oasis:names:tc:xacml:1.0:function:integer-greater-than
urn:oasis:names:tc:xacml:1.0:function:integer-greater-than-or-equal
urn:oasis:names:tc:xacml:1.0:function:integer-less-than
urn:oasis:names:tc:xacml:1.0:function:integer-less-than-or-equal
urn:abc4trust:1.0:function:integer-not-equal
Comments: Best choice for integers that can have positive or negative values.

• Encoding: urn:abc4trust:1.0:encoding:integer:prime
Data type: http://www.w3.org/2001/XMLSchema#integer
Restrictions: Can only be used for attributes where the value range is restricted by a list of
.../abc:AttributeDescription/abc:AllowedValue elements.
Inspectable: yes
Supported predicates:
urn:oasis:names:tc:xacml:1.0:function:integer-equal
urn:abc4trust:1.0:function:integer-not-equal
urn:abc4trust:1.0:function:integer-equal-one of
Comments: Best choice for attributes with a limited value range where presentation policies are
likely to request showing that the attribute value is one of a given list of integers without revealing
the exact value.

.../abc:AttributeDescriptions/abc:AttributeDescription/abc:FriendlyAttributeName

This optional element provides a friendly textual name for the attribute in the credential. The content of
this element MUST be localized in a specific language.

.../abc:AttributeDescriptions/abc:AttributeDescription/abc:FriendlyAttributeName/@xml:
lang

A required language identifier, using the language codes specified in [Alv01], in which the content of
abc:FriendlyAttributeName element have been localized.

.../abc:AttributeDescriptions/abc:AttributeDescription/abc:AllowedValue

When present, a list of AllowedValue elements restricts the range of the value of this credential at-
tribute to the specified list of values. Each AllowedValue element contains one possible value of the
credential attribute. If abc:AttributeDescription contains one or more abc:AllowedValue elements,
the actual value of the attribute of an issued credential MUST be from the specified set of allowed
values. The contents of the abc:AllowedValue elements MUST be of the data type specified by the
abc:AttributeDescription/@DataType attribute of the parent abc:AttributeDescription element.

4.2.2 System Parameters

In order for multiple issuers to agree on the cryptographic parameters to use throughout the system, all
entities in the system must agree on one set of system parameters. These parameters have to be generated
once, before any of the issuer parameters and other keys are generated. How this artifact is protected
(authenticated) is application specific.

Page 43 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

1 <abc:SystemParameters Version="1.0" SystemParametersUID="xs:anyURI">
2 <abc:CryptoParams>...</abc:CryptoParams>
3 </abc:SystemParameters>

The following describes the attributes and elements listed in the schema outlined above:

/abc:SystemParameters

This element contains the system parameters.

/abc:SystemParameters/@Version

The version attribute has been made optional. It will be removed but currently it is kept for backwards
compatibility. The version information should be taken from the schema itself rather than from this field.
For the current version of the schema, it must be set to "1.0".

/abc:SystemParameters/@SystemParametersUID

This element contains a URI that uniquely identifies the system parameters. This field will be required in
future versions.

/abc:SystemParameters/abc:CryptoParams

This element describes the set of public cryptographic parameters to which all issuer, verifiers, users,
revocation authorities, and inspectors need to perform any of the cryptographic tasks. The content of this
element is defined in an external profile.

4.2.3 Issuer Parameters

In order to issue credentials, the issuer must specify system parameters, and generate a key pair consisting
of a secret issuing key and a public verification key. The issuer publishes its public parameters using the
artifact described below. How this artifact is protected (authenticated) is application specific; e.g., it
could be included in a certificate signed by a certification authority, or could be provided as part of some
metadata retrievable from a trusted source.

Note that one set of issuer parameters can be used to issue credentials according to several different
credential specifications.

1 <abc:IssuerParameters Version="1.0">
2 <abc:ParametersUID>xs:anyURI</abc:ParametersUID>
3 <abc:FriendlyIssuerDescription lang="xs:language">
4 xs:string
5 </abc:FriendlyIssuerDescription>∗
6 <abc:AlgorithmID>xs:anyURI</abc:AlgorithmID>
7 <abc:SystemParametersUID>xs:anyURI</abc:SystemParametersUID>
8 <abc:MaximalNumberOfAttributes>xs:int</abc:MaxNumberOfAttributes>
9 <abc:HashAlgorithm>xs:anyUID</abc:HashAlgorithm>

10 <abc:CryptoParams>...</abc:CryptoParams>
11 <abc:RevocationParametersUID>...</abc:RevocationParametersUID>?
12 </abc:IssuerParameters>

The following describes the attributes and elements listed in the schema outlined above:

/abc:IssuerParameters

This element contains an issuer’s public parameters.

/abc:IssuerParameters/@Version

The version attribute has been made optional. It will be removed but currently is kept for backwards
compatibility. The version information should be taken from the schema itself rather than from this field.
For the current version of the schema, it must be set to "1.0".

/abc:IssuerParameters/abc:ParametersUID

This element contains a URI that uniquely identifies the public issuer parameters.

/abc:IssuerParameters/abc:FriendlyIssuerDescription

Page 44 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

This optional element provides a friendly textual description of the issuer. The content of this element
MUST be localized in a specific language.

/abc:IssuerParameters/abc:FriendlyIssuerDescription/@lang

A required language identifier, using the language codes specified in [Alv01], in which the content of
abc:FriendlyIssuerDescription element have been localized.

/abc:IssuerParameters/abc:AlgorithmID

This element identifies the algorithm of the public issuer parameters. The algorithm URIs
urn:abc4trust:1.0:algorithm:idemix for Identity Mixer and urn:abc4trust:1.0:algorithm:uprove
for U-Prove MUST be supported; other algorithms MAY be supported.

/abc:IssuerParameters/abc:SystemParametersUID

This element identifies the system parameters that are to be used with these issuer parameters.

/abc:IssuerParameters/abc:MaximalNumberOfAttributes

One set of issuer parameters can be used to issue credentials adhering to multiple credential specifications.
This element specifies the maximum number of attributes for such credentials. The number of attributes
in a credential is fixed by credential specification. For revocable credentials, the revocation handle counts
towards the maximum number of attributes.

/abc:IssuerParameters/abc:HashAlgorithm

This element specifies the hash algorithm that is to be used in the generation of the presentation
tokens derived from credentials issued under these parameters. This hash algorithm is not to be
confused with the encoding algorithm that maps attribute values to integers and may also spec-
ify a hash function to apply to long attribute values. The hash algorithm SHA-256 with identifier
urn:abc4trust:1.0:hashalgorithm:sha-256 MUST be supported; other algorithms MAY be supported.

/abc:IssuerParameters/abc:CryptoParams

This element describes the set of public cryptographic parameters needed to issue, use, and verify
credentials. The content of this element is defined in an external profile based on the value of the
abc:AlgorithmID element.

/abc:IssuerParameters/abc:RevocationParametersUID

This optional element contains the parameters identifier of a revocation authority that is responsible for
revoking credentials issued under these issuer parameters. The parameters referred to here are determined
by the issuer (i.e., issuer-driven revocation), meaning that any presentation token involving credentials
issued under these issuer parameters MUST be checked against the latest revocation information associated
to the revocation parameters referenced by this element.

4.2.4 Inspector Public Key

In order to decrypt encrypted attributes, an inspector must generate a key pair consisting of a secret
decryption key and a public encryption key. The inspector publishes its public key using the artifact
described below. How this artifact is protected (authenticated) is application specific; e.g., it could be
included in a certificate signed by a certification authority, or could be provided as part of some metadata
retrievable from a trusted source.

1 <abc:InspectorPublicKey Version="1.0">
2 <abc:PublicKeyUID>xs:anyURI</abc:PublicKeyUID>
3 <abc:AlgorithmID>xs:anyURI</abc:AlgorithmID>
4 <abc:FriendlyInspectorDescription lang="xs:language">
5 xs:string
6 </abc:FriendlyInspectorDescription>∗
7 <abc:CryptoParams>...</abc:CryptoParams>
8 </abc:InspectorPublicKey>

Page 45 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

The following describes the attributes and elements listed in the schema outlined above:

/abc:InspectorPublicKey

This element contains an inspector’s public key.

/abc:InspectorPublicKey/@Version

The version attribute has been made optional. It will be removed but currently is kept for backwards
compatibility. The version information should be taken from the schema itself rather than from this field.
For the current version of the schema, it must be set to "1.0".

/abc:InspectorPublicKey/abc:PublicKeyUID

This element contains a URI that uniquely identifies the public key.

/abc:InspectorPublicKey/abc:AlgorithmID

This element identifies the algorithm of the public key. The Camenisch-Shoup inspection algorithm [CS03b]
with identifier urn:abc4trust:1.0:inspectionalgorithm:camenisch-shoup03 MUST be supported;
other algorithms MAY be supported.

/abc:InspectorPublicKey/abc:FriendlyInspectorDescription

This optional element provides a friendly textual description for the inspector’s public key. The content of
this element MUST be localized in a specific language.

/abc:InspectorPublicKey/abc:FriendlyInspectorDescription/@lang

A required language identifier, using the language codes specified in [Alv01], in which the content of
abc:FriendlyInspectorDescription element have been localized.

/abc:InspectorPublicKey/abc:CryptoParams

This element describes the set of public cryptographic parameters needed to issue, use, and verify
credentials. The content of this element is defined in an external profile based on the value of the
abc:AlgorithmID element.

4.2.5 Verifier Parameters

In order for the verifier to communicate to the user which cryptographic algorithms he supports, and
provide additional parameters for these algorithms, the verifier must generate a set of verifier parameters
and send them to the user. How this artifact is protected (authenticated) is application specific.

1 <abc:VerifierParameters Version="1.0" VerifierParametersId="xs:anyURI" SystemParametersId="xs:anyURI">
2 <abc:CryptoParams>...</abc:CryptoParams>
3 </abc:VerifierParameters>

The following describes the attributes and elements listed in the schema outlined above:

/abc:VerifierParameters

This element contains the verifier parameters.

/abc:VerifierParameters/@Version

The version attribute has been made optional. It will be removed but currently it is kept for backwards
compatibility. The version information should be taken from the schema itself rather than from this field.
For the current version of the schema, it must be set to "1.0".

/abc:VerifierParameters/@VerifierParametersId

This element contains a URI that uniquely identifies these verifier parameters.

/abc:VerifierParameters/@SystemParametersId

This element contains a URI that references the system parameters that are to be used with these verifier
parameters.

/abc:VerifierParameters/abc:CryptoParams

Page 46 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

This element describes the set of public cryptographic parameters which the user needs to determine
which cryptographic algorithms are supported by the verifier, and which cryptographic parameters must
be used in those algorithms. The content of this element is defined in an external profile.

4.3 Revocation

A Revocation Authority maintains information about valid and, in particular, revoked credentials. To
do so, it first generates public parameters and possibly corresponding secret parameters. It publishes its
public parameters together with a description of the particular revocation method that is used and a
reference to the location where the most current revocation information will be published.

Some revocation mechanisms, such as the implemented accumulator scheme, require users to obtain an
additional piece of information called non-revocation evidence in order to be able to prove that their
credential is still valid.

The different revocation mechanisms vary quite strongly in how the non-revocation evidence is created
and maintained. Depending on the specific mechanism, the non-revocation evidence

• may be the same for all users, or may be different for each user and/or each issued credential;

• may be sensitive information that the user needs to keep strictly secret, or may be leaked to other
participants without further harm;

• may be first created during the issuance of the credential, during the first usage (presentation) of
the credential, or at any time between issuance and first usage;

• may have to be kept up-to-date with the non-revocation information, or may remain the same for
the lifetime of the credential.

The Revocation Authority can also include references to the locations where the users can obtain the
information to create and to update their non-revocation evidence. Both the initialization of the non-
revocation evidence and the update may be multi-leg cryptographic protocols.

4.3.1 Revocation Authority Parameters

Each Revocation Authority generates and publishes its parameters at setup. The parameters are static,
i.e., they do not change over time as more credentials are revoked.

1 <abc:RevocationAuthorityParameters Version="1.0">
2 <abc:ParametersUID>xs:anyURI</abc:ParametersUID>
3 <abc:RevocationMechanism>xs:anyURI</abc:RevocationMechanism>
4 <abc:RevocationInfoReference ReferenceType="xs:anyURI">
5 ...
6 </abc:RevocationInfoReference>?
7 <abc:NonRevocationEvidenceReference ReferenceType="xs:anyURI">
8 ...
9 </abc:NonRevocationEvidenceReference>?

10 <abc:NonRevocationEvidenceUpdateReference ReferenceType="xs:anyURI">
11 ...
12 </abc:NonRevocationEvidenceUpdateReference>?
13 <abc:CryptoParams>...</CryptoParams>?
14 </abc:RevocationAuthorityParameters>

/abc:RevocationAuthorityParameters

This element contains the public parameters of the Revocation Authority

/abc:RevocationAuthorityParameters/@Version

The version attribute has been made optional. It will be removed but currently is kept for backwards
compatibility. The version information should be taken from the schema itself rather than from this field.
For the current version of the schema, it must be set to "1.0".

/abc:RevocationAuthorityParameters/abc:ParametersUID

This element contains a unique identifier for these Revocation Authority parameters.

Page 47 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

/abc:RevocationAuthorityParameters/RevocationMechanism

This attribute indicates the mechanism or algorithm used to revoke credentials. The revocation mecha-
nisms urn:abc4trust:1.0:algorithm:uprove and urn:abc4trust:1.0:algorithm:idemix MUST be
supported; other revocation mechanisms MAY be supported.

/abc:RevocationAuthorityParameters/abc:RevocationInfoReference

This optional element contains a reference to the endpoint where the most current public revocation
information corresponding to these parameters can be obtained.

/abc:RevocationAuthorityParameters/abc:NonRevocationEvidenceReference

This optional element contains a reference to the endpoint with the information about how to obtain the
(possibly private) user-specific non-revocation evidence object.

/abc:RevocationAuthorityParameters/abc:NonRevocationEvidenceUpdateReference

This optional element contains a reference to the endpoint the most current information for updating the
non-revocation evidence can be obtained.

/abc:RevocationAuthorityParameters/abc:RevocationInfoReference/@ReferenceType

This attribute indicates the type of reference to the revocation information endpoint.

/abc:RevocationAuthorityParameters/abc:CryptoParams

This element describes the set of public cryptographic parameters that are needed to verify the Revocation
Information. The content of this element is defined in an external profile based on the value of the
abc:RevocationMechanism element.

4.3.2 Revocation Information

A Revocation Authority regularly publishes the most recent revocation information, allowing Users to
prove and Verifiers to ensure that the credentials used to generate a presentation token have not been
revoked. Contrary to the Revocation Authority parameters, the revocation information changes over time,
e.g., at regular time intervals, or whenever a new credential is revoked.

The Revocation Authority publishes the revocation information using the artifact described below. How
this artifact is protected (authenticated) is application specific; e.g., it could be included in a XML-signed
document or provided as part of some metadata retrievable from a trusted source.

1 <abc:RevocationInformation Version="1.0">
2 <abc:RevocationInformationUID>xs:anyURI</abc:InformationUID>
3 <abc:RevocationAuthorityParametersUID>
4 xs:anyURI
5 </abc:RevocationAuthorityParametersUID>
6 <abc:Created>xs:dateTime</abc:Created>?
7 <abc:Expires>xs:dateTime</abc:Expires>?
8 <abc:CryptoParams>...</abc:CryptoParams>
9 </abc:RevocationInformation>

The following describes the attributes and elements listed in the schema outlined above:

/abc:RevocationInformation

This element contains the current revocation information, as published by the Revocation Authority. At
each update of the revocation information, a new abc:RevocationInformation element is generated.

/abc:RevocationInformation/@Version

The version attribute has been made optional. It will be removed but currently is kept for backwards
compatibility. The version information should be taken from the schema itself rather than from this field.
For the current version of the schema, it must be set to "1.0".

/abc:RevocationInformation/abc:RevocationInformationUID

This element contains the unique identifier of the revocation information. This identifier is different for
each version of the revocation information, i.e., a new URI is used at every update.

Page 48 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

/abc:RevocationInformation/abc:RevocationAuthorityUID

This element contains the identifier of the parameters of the revocation authority that published the
revocation information.

/abc:RevocationInformation/abc:Created

This optional element contains the date and time when the revocation information was updated or first
published.

/abc:RevocationInformation/abc:Expires

This optional element contains the date and time until when the revocation information is valid.

/abc:IssuerParameters/abc:CryptoParams

This element describes the set of public cryptographic parameters needed to verify whether a credential
is still valid. (The content of this element is defined in an external profile based on the value of
the @RevocationMechanism attribute specified in the referenced abc:RevocationAuthorityParameters
element)

4.3.3 Non-Revocation Evidence

The exact details of how and when the non-revocation evidence is created and updated vary greatly among
the different revocation mechanisms. We therefore simply define an artifact that acts as a wrapper for a
message in a (possibly multi-legged) evidence creation or update protocol. These messages are sent to
and received as a response from the evidence creation and update endpoints specified in the Revocation
Authority parameters.

1 <abc:RevocationMessage Context="...">
2 <abc:RevocationAuthorityParametersUID>
3 xs:anyURI
4 </abc:RevocationAuthorityParametersUID>
5 <abc:RevocationMessageType>
6 xs:string
7 </abc:RevocationMessageType>
8 <abc:CryptoParams>...</abc:CryptoParams>
9 </abc:RevocationMessage>

The following describes the attributes and elements listed in the schema outlined above:

/abc:RevocationMessage/@Context

This attribute contains a unique identifier for this protocol session, so that the different flows in the
protocol session can be linked together. The request MUST contain a Context attribute. The revocation
authority MUST reject requests with context values already in use.

/abc:RevocationMessage/abc:RevocationAuthorityParametersUID

This element contains the identifier of the parameters of the revocation authority that creates the
non-revocation evidence information.

/abc:RevocationMessage/abc:RevocationMessageType

This element serves to communicate the purpose of this message to the communication endpoint. For
example, the verifier may specify to retrieve the most recent revocation information using this field.

/abc:RevocationMessage/abc:CryptoParams

This element describes the mechanism-specific (cryptographic) parameters needed to obtain the non-
revocation evidence information for building or updating the evidence.

Page 49 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

4.4 Presentation

The user agent can create presentation tokens using one or more credentials in its possession. The verifier
can optionally insist that all credentials used to generate the token are bound to the same user (i.e., to
the same user secret) or device.

In a typical ABC presentation interaction, the user first requests access to a protected resource, upon
which the verifier sends a presentation policy that describes which credentials the user should present to
obtain access. The user agent then checks whether it has the necessary credentials to satisfy the verifier’s
presentation policy, and if so, generates a presentation token containing the appropriate cryptographic
evidence.

Upon receiving the presentation token, the verifier checks that the cryptographic evidence is valid for the
presented credentials and checks that the token satisfies the presentation policy. If both tests succeed, it
grants access to the resource.

4.4.1 Presentation Policy

The verifier’s policy describes the class of presentation tokens that it will accept. It is expressed by means
of a abc:PresentationPolicyAlternatives element, with the following schema:

1 <abc:PresentationPolicyAlternatives Version="1.0">
2 <abc:PresentationPolicy PolicyUID="xs:anyURI"?>
3 <abc:Message>
4 <abc:Nonce>...</abc:Nonce>?
5 <abc:FriendlyPolicyName lang="xs:language">
6 xs:string
7 </abc:FriendlyPolicyName>∗
8 <abc:FriendlyPolicyDescription lang="xs:language">
9 xs:string

10 </abc:FriendlyPolicyDescription>∗
11 <abc:VerifierIdentity>xs:any</abc:VerifierIdentity>?
12 <abc:ApplicationData>...</abc:ApplicationData>?
13 </abc:Message>?
14 <abc:Pseudonym Exclusive="xs:boolean"? Scope="xs:string"
15 Established="xs:boolean"? Alias="xs:anyURI"?
16 SameKeyBindingAs="xs:anyURI"?>
17 <abc:PseudonymValue> </abc:PseudonymValue>?
18 </abc:Pseudonym>∗
19 <abc:Credential Alias="xs:anyURI"? SameKeyBindingAs="xs:anyURI"?>
20 <abc:CredentialSpecAlternatives>
21 <abc:CredentialSpecUID>...</abc:CredentialSpecUID>+
22 </abc:CredentialSpecAlternatives>
23 <abc:IssuerAlternatives>
24 <abc:IssuerParametersUID
25 RevocationInformationUID="xs:anyURI"?>
26 ...
27 </abc:IssuerParametersUID>+
28 </abc:IssuerAlternatives>
29 <abc:DisclosedAttribute AttributeType="xs:anyURI"
30 DataHandlingPolicy="xs:anyURI"?>
31 (<abc:InspectorAlternatives>
32 <abc:InspectorPublicKeyUID>...</abc:InspectorPublicKeyUID>+
33 </abc:InspectorAlternatives>
34 <abc:InspectionGrounds>...</abc:InspectionGrounds>
35)?
36 </abc:DisclosedAttribute>∗
37 </abc:Credential>∗
38 <abc:VerifierDrivenRevocation>
39 <abc:RevocationParametersUID>...</abc:RevocationParametersUID>
40 <abc:Attribute CredentialAlias="xs:anyURI"
41 AttributeType="xs:anyURI">+
42 </abc:VerifierDrivenRevocation>∗
43 <abc:AttributePredicate Function="xs:anyURI">
44 (<abc:Attribute CredentialAlias="xs:anyURI"
45 AttributeType="xs:anyURI" DataHandlingPolicy="xs:anyURI"?/>
46 |
47 <abc:ConstantValue>...</abc:ConstantValue>
48)+
49 </abc:AttributePredicate>∗
50 </abc:PresentationPolicy>+
51 </abc:PresentationPolicyAlternatives>

Page 50 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

The following describes the attributes and elements listed in the schema outlined above: /abc:Presentat
ionPolicyAlternatives

This element contains a presentation policy, which may contain multiple policy alternatives as child
elements. The presented token must satisfy at least one of the specified policies.

/abc:PresentationPolicyAlternatives/@Version

The version attribute has been made optional. It will be removed but currently is kept for backwards
compatibility. The version information should be taken from the schema itself rather than from this field.
For the current version of the schema, it must be set to "1.0".

/abc:PresentationPolicyAlternatives/abc:PresentationPolicy

This element contains one policy alternative.

.../abc:PresentationPolicy/@PolicyUID

This attribute assigns a unique identifier to this presentation policy that can be referenced from presentation
tokens that satisfy the policy.

/abc:PresentationPolicyAlternatives/abc:PresentationPolicy/abc:Message

This optional element specifies a message to be authenticated (signed) by the private key of each credential
in the token.

.../abc:PresentationPolicy/abc:Message/abc:Nonce

This optional element contains a random nonce.

.../abc:PresentationPolicy/abc:Message/abc:FriendlyPolicyName

This optional element provides a friendly textual name for the policy. The content of this element MUST
be localized in a specific language

.../abc:PresentationPolicy/abc:Message/abc:FriendlyPolicyName/@lang

A required language identifier, using the language codes specified in [Alv01], in which the content of
abc:FriendlyPolicyName element have been localized.

.../abc:PresentationPolicy/abc:Message/abc:FriendlyPolicyDescription

This optional element provides a friendly textual description for the policy. The content of this element
MUST be localized in a specific language.

.../abc:PresentationPolicy/abc:Message/abc:FriendlyPolicyDescription/@lang

A required language identifier, using the language codes specified in [Alv01], in which the content of
abc:FriendlyPolicyDescription element have been localized.

.../abc:PresentationPolicy/abc:Message/abc:VerifierIdentity

This optional element contains the identity of the verifier (e.g., his URL, public key, or SSL certificate
hash) for whom the presentation token must be constructed. The presentation token will authenticate
the verifier identity, offering some protection against man-in-the-middle attacks if the user’s application
software can parse and verify the verifier’s identity.

.../abc:PresentationPolicy/abc:Message/abc:ApplicationData

This optional element can contain any application-specific data. The contained data MAY be human
readable, depending on the application, and displayed to the user.

.../abc:PresentationPolicyAlternatives/abc:PresentationPolicy/abc:Pseudonym

When present, this optional element indicates that a pseudonym must be presented with the presentation
token. If this policy does not involve any credentials to be presented, then a verifiable pseudonym must
be presented. Otherwise, a certified pseudonym associated to the presented credentials must be presented.
See Section 2.4 for more information on pseudonyms.

.../abc:PresentationPolicy/abc:Pseudonym/@Scope

Page 51 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

This attribute indicates a string to which the pseudonym is associated. The user agent is assumed to
maintain state information to keep track of which pseudonym it previously used for which scope. There can
be multiple verifiable or certified pseudonyms associated to the same scope string, but a scope-exclusive
pseudonym is guaranteed to be unique with respect to the scope string and the user secret. In the former
case, the scope string is merely a hint to the user agent which of its stored pseudonyms can be reused
in the presentation token, or to which scope string it should associate a newly created pseudonym. In
the latter case, the scope string uniquely determines the pseudonym that needs to be used. The scope
string MAY encode an identifier of the verifier and/or of the requested resource. See Section 2.4 for more
information on the use of pseudonyms.

.../abc:PresentationPolicy/abc:Pseudonym/@Exclusive

When present and set to true, this attribute indicates that a scope-exclusive pseudonym is to be presented
with the token. The value of the @Scope attribute determines the scope with respect to which the
pseudonym must be generated. See Section 2.4 for more information on scope-exclusive pseudonyms.

.../abc:PresentationPolicy/abc:Pseudonym/@Established

When set to true, this attribute indicates that the pseudonym to be presented by the User must re-
authenticate under a pseudonym that was previously established with the Verifier. When set to false or
when not present, this attribute indicates that the User may establish a new pseudonym in the presentation
token.

.../abc:PresentationPolicy/abc:Pseudonym/@Alias

This optional attribute defines an alias for this pseudonym so that it can be referred to
from other pseudonyms or credentials to enforce same key binding, or, if this presentation
token is part of an issuance token, to support carrying over key binding to the newly is-
sued credential. See the /abc:IssuancePolicy/abc:CredentialTemplate/abc:UnknownAttributes
/abc:KeyBinding/abc:PseudonymInfo/@Alias element.

.../abc:PresentationPolicy/abc:Pseudonym/@SameKeyBindingAs

If present, this XML attribute contains an alias referring either to another Pseudonym element within
this policy, or to a Credential element for a credential with key binding. This indicates that the current
pseudonym and the referred pseudonym or credential have to be bound to the same key. Insisting
credentials to be bound to the same key limits users from sharing credentials.

The pseudonym or credential that is referred to does not have to refer back to this pseudonym. If
the referred to pseudonym or credential also has a SameKeyBindingAs attribute that refers to a third
pseudonym or credential, then all three pseudonyms/credentials must be bound to the same key. In other
words, SameKeyBindingAs induces a transitive relationship.

.../abc:PresentationPolicy/abc:Pseudonym/abc:PseudonymValue

When present, this optional element indicates that a pseudonym with the given value must be presented,
the value being encoded as content of type xs:base64Binary. Note that this feature only makes sense if
the verifier has reason to believe that the user to whom the policy is sent knows the user secret (and, if
applicable, pseudonym metadata) underlying the given pseudonym, for example, because he established
the pseudonym in a previous presentation token.

.../abc:PresentationPolicy/abc:Credential

This optional element specifies a credential that has to be used in the generation of the token. Omitting
this element may be useful, for example, when the user can obtain access by merely presenting an existing
verifiable pseudonym.

.../abc:PresentationPolicy/abc:Credential/@Alias

This optional attribute creates an alias for this credential to refer to attributes from this credential in
attribute predicates. See the .../abc:PresentationPolicy/abc:AttributePredicates element.

.../abc:PresentationPolicy/abc:Credential/@SameKeyBindingAs

Page 52 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

If present, this XML attribute contains an alias referring either to a Pseudonym element within this
policy, or to another Credential element for a credential with key binding. This indicates that the
current credential and the referred pseudonym or credential have to be bound to the same key. Insisting
credentials to be bound to the same key limits users from sharing credentials.

The pseudonym or credential that is referred to does not have to refer back to this credential. If the referred
to pseudonym or credential also has a SameKeyBindingAs attribute that refers to a third pseudonym
or credential, then all three pseudonyms/credentials must be bound to the same key. In other words,
SameKeyBindingAs induces a transitive relationship.

.../abc:PresentationPolicy/abc:Credential/abc:CredentialSpecAlternatives

This element contains a list of credential specifications. The issued credential used to instantiate this
credential in the presentation token must adhere to one of the listed credential specifications.

.../abc:Credential/abc:CredentialSpecAlternatives/abc:CredentialSpecUID

This element contains one credential specification identifier that can be used to instantiate this credential
in the presentation token.

.../abc:Credential/abc:IssuerAlternatives

This element contains a list of identifiers for issuer parameters UID. The issued credential used to instantiate
this credential in the presentation token must be issued under one of the listed issuer parameters.

.../abc:Credential/abc:IssuerAlternatives/abc:IssuerParametersUID

This element contains one issuer parameters identifier that is accepted for this credential in the presentation
token.

This specification defines two dedicated values for the issuer parameters:

• The value http://abc4trust.eu/wp2/issuerparameters/unsigned indicates that the attribute
values in this credential are self-claimed, without any form of authentication by either an external
issuer or the user herself.

• The value http://abc4trust.eu/wp2/issuerparameters/pseudonymously-sel
f-signed indicates that the attribute values in this credential are self-claimed
and signed under the pseudonym of the user provided in the same presenta-
tion token. This value can only occur when the presentation policy contains a
/abc:PresentationPolicyAlternatives/abc:PresentationPolicy/abc:Pseudonym element.

.../abc:IssuerAlternatives/abc:IssuerParametersUID/@RevocationInformationUID

If the issuer parameters referred to in this element specify an Issuer-driven Revocation Authority, i.e., if
the referred abc:IssuerParameters element contains an abc:RevocationParametersUID child element,
then this optional XML attribute can indicate for which version of the revocation information the presented
token must be valid. By specifying the current revocation information identifier in the presentation policy,
the User does not have to get in touch with the Revocation Authority to check whether her non-revocation
evidence information is still up to date, thereby avoiding a possible source of linkability.

.../abc:PresentationPolicy/abc:Credential//abc:DisclosedAttribute

This element specifies an attribute of this credential that has to be revealed in the presentation token,
either to the verifier itself, or to an external inspector.

Even though there are no syntactical restrictions imposing this, presentation policies
SHOULD NOT request to reveal the value of the revocation handle (with attribute type
http://abc4trust.eu/wp2/abcschemav1.0/revocationhandle), as doing so enables Verifiers to
link presentation tokens generated with the same credential. If necessary, inspection can be used to only
reveal the value of the revocation handle under specific circumstances.

.../abc:Credentials/abc:Credential/abc:DisclosedAttribute/@AttributeType

This attribute specifies the type of the credential attribute of which the value must be revealed in the
presentation token. If multiple credential specifications are allowed for this credential (i.e., if multiple

Page 53 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

abc:CredentialSpecUID elements are listed in the abc:CredentialSpecAlternatives child element
of the ancestor abc:Credential element), then the specified attribute type MUST occur in all listed
credential specifications.

For each credential and each attribute type, there MUST be at most one abc:DisclosedAttribute element
without abc:InspectorAlternatives child element. Likewise, for each credential and each attribute type,
there MUST be at most one abc:DisclosedAttribute element with the same abc:InspectionGrounds
child element.

.../abc:Credential/abc:DisclosedAttribute/@DataHandlingPolicy

This XML attribute can be used to refer to an external data handling policy describing how the Verifier
will treat the revealed attribute value once it is received. The data handling policy may be human-readable
and/or machine-readable. The specification of a data handling policy schema is outside of the scope of
this document.

.../abc:Credential/abc:DisclosedAttribute/abc:InspectorAlternatives

This optional element lists a number of inspector public key identifiers. When present, this element
indicates that the value of this attribute does not have to be revealed to the verifier, but must be encrypted
under one of the listed inspector public keys. See Section 2.5 for more details on revealing attributes to
an inspector.

.../abc:DisclosedAttribute/abc:InspectorAlternatives/abc:InspectorPublicKeyUID

This element contains one identifier of an inspector public key under which the attribute value can be
encrypted.

.../abc:Credential/abc:DisclosedAttribute/abc:InspectionGrounds

This optional element contains a string describing the valid grounds or circumstances under which the
inspector can be asked to decrypt the attribute value. This element must be present whenever a sibling
abc:InspectorAlternatives element is present. See Section 2.5 for more details on revealing attributes
to an inspector.

.../abc:PresentationPolicy/abc:VerifierDrivenRevocation

This optional element specifies all parameters for checking if a (set of) attribute value(s) from the specified
credentials was not revoked using verifier-driven revocation.

Verifier-driven revocation can be based on combinations of attributes from a set of different credentials,
in which case there will be multiple abc:Attribute elements per one abc:VerifierDrivenRevocation
element. Then the User has to prove that a disjunctive combination of these attribute values was not
revoked with respect to the specified abc:RevocationParametersUID.

.../abc:PresentationPolicy/abc:VerifierDrivenRevocation/abc:RevocationParametersUID

This element contains the UID of the revocation authority parameters. The User needs to provide a proof
that a following (set of) attribute value(s) was not revoked according to the specified set of parameters.

.../abc:PresentationPolicy/abc:VerifierDrivenRevocation/abc:Attribute

This element specifies a credential attribute that is used for verifier-driven revocation.

.../abc:PresentationPolicy/abc:VerifierDrivenRevocation/abc:Attribute/@CredentialAlias

This attribute specifies the alias of the credential from which the attribute is used. The spec-
ified value MUST also occur as an Alias attribute in an abc:Credential element within this
abc:PresentationPolicy.

.../abc:PresentationPolicy/abc:VerifierDrivenRevocation/abc:Attribute/@AttributeType

This attribute refers to the attribute within the credential that is to be used for verifier driven revocation.

.../abc:PresentationPolicy/abc:AttributePredicate

This element specifies a predicate that must hold over the attribute values. To satisfy the policy, the
presentation token must for each of the listed predicates either prove (in a data-minimizing way) that the

Page 54 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

credential attributes satisfy the specified predicate, or must reveal the value of the involved attribute(s)
so that the verifier can check whether the predicate is satisfied. The child elements are the ordered list of
arguments of the predicate.

.../abc:PresentationPolicy/abc:AttributePredicate/@Function

This attribute specifies the boolean function for this predicate. See Section 4.4.3 for a list of supported
functions and their implications on the list of arguments in the child elements. Note that not all predicate
functions can be used for all attributes: the allowed predicate functions depend on the data type and on
the chosen encoding of the credential attributes. See Section 4.2.1 for a list of which predicates can be
used in combination with which data types and encodings.

.../abc:AttributePredicate/abc:Attribute

This element specifies a reference to a credential attribute that is to be used as an argument of the
predicate.

.../abc:AttributePredicate/abc:Attribute/@CredentialAlias

This attribute specifies the alias of the credential from which the attribute must be used. The spec-
ified alias MUST also occur as an Alias attribute in an abc:Credential element within the ancestor
abc:PresentationPolicy element.

.../abc:AttributePredicate/abc:Attribute/@AttributeType

This attribute refers to the attribute within the credential that is to be used as an argument in the
predicate.

.../abc:AttributePredicate/abc:Attribute/@DataHandlingPolicy

This XML attribute can be used to refer to an external data handling policy describing how the Verifier
will treat the information that the attribute value satisfies the specified predicate. The data handling
policy may be human-readable and/or machine-readable. The specification of a data handling policy
schema is outside of the scope of this document.

.../abc:AttributePredicate/abc:ConstantValue

This element contains a constant value that is to be used as an argument in the predicate. The data type
of the argument depends on the function of the predicate. We refer to Section 4.2.1 for a list of supported
functions and the data types of their arguments.

4.4.2 Presentation Token

The presentation of one or multiple credentials results in a presentation token that is sent to the verifier.
The syntax for the element is:

Page 55 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

1 <abc:PresentationToken Version="1.0">
2 <abc:PresentationTokenDescription PolicyUID="xs:anyURI"
3 TokenUID="xs:anyURI"?>
4 <abc:Message>
5 <abc:Nonce>...</abc:Nonce>?
6 <abc:FriendlyPolicyName lang="xs:language">
7 xs:string
8 </abc:FriendlyPolicyName>∗
9 <abc:FriendlyPolicyDescription lang="xs:language">

10 xs:string
11 </abc:FriendlyPolicyDescription>∗
12 <abc:VerifierIdentity>xs:any</abc:VerifierIdentity>
13 <abc:ApplicationData>...</abc:ApplicationData>?
14 </abc:Message>?
15 <abc:Pseudonym Scope="xs:string"? Exclusive="xs:boolean"?
16 Alias="xs:anyURI"? SameKeyBindingAs="xs:anyURI"?>
17 <abc:PseudonymValue>...</abc:PseudonymValue>
18 </abc:Pseudonym>∗
19 <abc:Credential Alias="xs:anyURI"? SameKeyBindingAs="xs:anyURI"?>
20 <abc:CredentialSpecUID>...</abc:CredentialSpecUID>
21 <abc:IssuerParametersUID>...</abc:IssuerParametersUID>
22 <abc:RevocationInformationUID>
23 ...
24 </abc:RevocationInformationUID>?
25 <abc:DisclosedAttribute AttributeType="xs:anyURI"
26 DataHandlingPolicy="xs:anyURI"?>
27 (<abc:InspectorPublicKeyUID>...</abc:InspectorPublicKeyUID>
28 <abc:InspectionGrounds>...</abc:InspectionGrounds>
29)?
30 <abc:AttributeValue>...</abc:AttributeValue>
31 </abc:DisclosedAttribute>∗
32 </abc:Credential>∗
33 <abc:VerifierDrivenRevocation>
34 <abc:RevocationInformationUID>...</abc:RevocationInformationUID>
35 <abc:Attribute AttributeType="xs:anyURI" CredentialAlias="xs:anyURI" >+
36 </abc:VerifierDrivenRevocation>∗
37 <abc:AttributePredicate Function="xs:anyURI">
38 (<abc:Attribute CredentialAlias="xs:anyURI"
39 AttributeType="xs:anyURI"
40 DataHandlingPolicy="xs:anyURI"?/>
41 |
42 <abc:ConstantValue>...</abc:ConstantValue>
43)+
44 </abc:AttributePredicate>∗
45 </abc:PresentationTokenDescription>
46 <abc:CryptoEvidence>...</abc:CryptoEvidence>
47 </abc:PresentationToken>

The following describes the attributes and elements listed in the schema outlined above:

/abc:PresentationToken

This element contains a presentation token.

/abc:PresentationToken/@Version

The version attribute has been made optional. It will be removed but currently is kept for backwards
compatibility. The version information should be taken from the schema itself rather than from this field.
For the current version of the schema, it must be set to "1.0".

/abc:PresentationTokenDescription

This element contains a technology-agnostic description of the revealed information.

.../abc:PresentationPolicy/@PolicyUID

This attribute refers to the UID of the presentation policy that this token satisfies.

.../abc:PresentationPolicy/@TokenUID

This optional attribute assigns a unique identifier to this presentation token.

.../abc:PresentationTokenDescription/abc:Message

This optional element specifies a message that is authenticated (signed) by the private key of each credential
in the token.

Page 56 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

.../abc:PresentationTokenDescription/abc:Message/abc:Nonce

This optional element contains a random nonce that is to be signed by a presentation token satisfying this
policy. The nonce is generated by the Issuer and prevents replay attacks.

.../abc:PresentationTokenDescription/abc:Message/abc:FriendlyPolicyName

This optional element provides a friendly textual name for the policy. The content of this element MUST
be localized in a specific language.

.../abc:PresentationTokenDescription/abc:Message/abc:FriendlyPolicyName/@lang

A required language identifier, using the language codes specified in [Alv01], in which the content of
abc:FriendlyPolicyName element have been localized.

.../abc:PresentationTokenDescription/abc:Message/abc:VerifierIdentity

This optional element contains the identity of the verifier (e.g., his URL, public key, or SSL certificate
hash) to whom this presentation token is intended. The presentation token authenticates the verifier
identity, meaning that it cannot be changed after the token was created. This can offer protection against
man-in-the-middle attacks if the user’s application software has a way to parse and verify the verifier’s
identity.

The format and verification of the verifier identity must be performed by the application logic. The ABCE
does not perform any such checks.

.../abc:PresentationTokenDescription/abc:Message/abc:FriendlyPolicyDescription

This optional element provides a friendly textual description for the policy. The content of this element
MUST be localized in a specific language.

.../abc:Message/abc:FriendlyPolicyDescription/@lang

A required language identifier, using the language codes specified in [Alv01], in which the content of
abc:FriendlyPolicyDescription element have been localized.

.../abc:PresentationTokenDescription/abc:Message/abc:ApplicationData

This optional element can contains data of type string.

.../abc:PresentationTokenDescription/abc:Pseudonym

When present, this element indicates that a pseudonym is presented with the presentation token. If this
policy does not involve any credentials, then this is a verifiable pseudonym, otherwise it is a certified
pseudonym associated to the presented credentials. See Section 2.4 for more information on pseudonyms.

.../abc:PresentationTokenDescription/abc:Pseudonym/@Scope

This optional attribute indicates that the presented pseudonym is for a specific scope (e.g., a resource
identifier) See Section 2.4 for more information on the use of pseudonyms. The user agent is assumed to
maintain state information to keep track of which pseudonym it previously used for which scope.

.../abc:PresentationTokenDescription/abc:Pseudonym/@Exclusive

When present, this attribute indicates that a scope-exclusive pseudonym is presented with the token. The
value of the @Scope attribute determines the scope with respect to which the pseudonym was generated.
See Section 2.4 for more information on scope-exclusive pseudonyms.

.../abc:PresentationTokenDescription/abc:Pseudonym/@Alias

This optional attribute defines an alias for this pseudonym so that it can be referred to from other
pseudonyms or credentials to enforce same key binding, or, if this presentation token is part of an issuance
token, to support carrying over key binding to the newly issued credential. See the /abc:IssuancePolic
y/abc:CredentialTemplate/abc:UnknownAttributes/abc:KeyBinding/abc:PseudonymInfo/@Alias
element.

.../abc:PresentationTokenDescription/abc:Pseudonym/@SameKeyBindingAs

Page 57 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

If present, this XML attribute contains an alias referring either to another Pseudonym element within this
presentation token, or to a Credential element for a credential with key binding. This indicates that the
current pseudonym and the referred pseudonym or credential are bound to the same key.

The pseudonym or credential that is referred to does not have to refer back to this pseudonym. If
the referred to pseudonym or credential also has a SameKeyBindingAs attribute that refers to a third
pseudonym or credential, then all three pseudonyms/credentials are bound to the same key. In other
words, SameKeyBindingAs induces a transitive relationship.

.../abc:PresentationTokenDescription/abc:Pseudonym/abc:PseudonymValue

This element contains the value of the pseudonym encoded as content of type xs:base64Binary.

If the token contains no abc:Credentials element but does contain an abc:Pseudonym, then this
presentation token merely proves knowledge of the secret key underlying the pseudonym.

.../abc:PresentationTokenDescription/abc:Credential

This optional element specifies a credential that is presented in this token. If the token contains no
abc:Credential element but does contain an abc:Pseudonym, then this presentation token merely proves
knowledge of the user secret underlying the pseudonym.

.../abc:PresentationTokenDescription/abc:Credential/@Alias

This optional attribute defines an alias for this credential to refer to attributes from this credential in
attribute predicates. See the /abc:PresentationToken/abc:AttributePredicates element.

.../abc:PresentationTokenDescription/abc:Credential/@SameKeyBindingAs

If present, this XML attribute contains an alias referring either to a Pseudonym element within this
presentation token, or to another Credential element for a credential with key binding. This indicates
that the current credential and the referred pseudonym or credential are bound to the same key.

The pseudonym or credential that is referred to does not have to refer back to this credential. If
the referred to pseudonym or credential also has a SameKeyBindingAs attribute that refers to a third
pseudonym or credential, then all three pseudonyms/credentials are bound to the same key. In other
words, SameKeyBindingAs induces a transitive relationship.

.../abc:Credential/abc:CredentialSpecUID

This element contains the credential specification identifier of the presented credential.

.../abc:PresentationTokenDescriptionabc:Credential/abc:IssuerParametersUID

This element contains the issuer public key identifier of the presented credential.

.../abc:PresentationTokenDescriptionabc:Credential/abc:RevocationInformationUID

This optional element contains an identifier of the revocation information with respect to which the
presented credential is proved to be non-revoked. The revocation information referenced here corresponds
to the issuer-driven revocation parameters referenced from the issuer parameters; see the /abc:Presenta
tionToken/abc:PresentationTokenDescription/abc:Credential/abc:VerifierDrivenRevocation
element for verifier-driven revocation.

When verifying the token, the verifier has to independently obtain the current revocation information using
the mechanism specified by the revocation authority parameters referenced in the IssuerParameters. It
is up to the verifier to check that the revocation information UID referenced in this element is indeed the
most recent one.

.../abc:PresentationTokenDescription/abc:Credential/abc:Attributes

This element lists the attributes from this credential that are revealed by this presentation token, either
in the clear to the verifier itself, or encrypted to an external inspector.

.../abc:PresentationTokenDescription/abc:Credential/abc:DisclosedAttribute

This element specifies one attribute of this credential that is revealed in the presentation token.

.../abc:Credential/abc:DisclosedAttribute/@AttributeType

Page 58 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

This attribute specifies the type of the credential attribute of which the value is revealed.

There MUST be at most one abc:DisclosedAttribute element without abc:InspectorPublicKeyUID
child element per credential and per attribute type. Also, for abc:DisclosedAttribute elements with
an abc:InspectorPublicKeyUID child element, there MUST be at most one abc:DisclosedAttribute
element per credential and per attribute type with the same abc:InspectionGrounds child element.

.../abc:Credential/abc:DisclosedAttribute/@DataHandlingPolicy

This optional XML attribute can be used to refer to an external data handling policy that the Verifier has
to adhere to concerning the revealed attribute value. The data handling policy may be human-readable
and/or machine-readable. The specification of a data handling policy schema is outside of the scope of
this document.

.../abc:Credential/abc:DisclosedAttribute/abc:InspectorPublicKeyUID

This optional element contains the identifier of the inspector public key under which the attribute value is
encrypted.

.../abc:Credential/abc:DisclosedAttribute/abc:InspectionGrounds

This optional element contains a string describing the valid grounds or circumstances under which the
inspector can be asked to decrypt the attribute value. This element must be present whenever a sibling
abc:InspectorPublicKeyUID element is present. See Section 2.5 for more details on revealing attributes
to an inspector.

.../abc:Credential/abc:DisclosedAttribute/abc:AttributeValue

This element specifies the value of the revealed attribute. When encrypted to an inspector, this element
MAY contain data of type xs:base64Binary representing the ciphertext for the encrypted attribute.
However, there is no guarantee that this data by itself is decryptable by the inspector. When requesting
decryption of an attribute, the complete presentation token must always be sent to the inspector.

.../abc:PresentationTokenDescription/abc:VerifierDrivenRevocation

This optional element specifies all parameters for checking if a (set of) attribute value(s) from the specified
credentials was not revoked using verifier-driven revocation, as requested in the presentation policy by the
verifier.

.../abc:PresentationTokenDescription/abc:VerifierDrivenRevocation/abc:RevocationInform
ationUID

This element contains an identifier of revocation information with respect to which the presented (combi-
nation of) attribute value(s) is proved to be non-revoked. The revocation information referenced here
corresponds to the verifier-driven revocation parameters mentioned in the verifier’s presentation pol-
icy; see the /abc:PresentationToken/abc:Credential/abc:RevocationInformationUID element for
issuer-driven revocation.

When verifying the token, the verifier has to independently obtain the current revocation information
using the mechanism specified by the revocation authority parameters referenced in the presentation
policy. It is up to the verifier to check that the revocation information UID referenced in this element is
indeed the most recent one.

.../abc:PresentationTokenDescription/abc:VerifierDrivenRevocation/abc:Attribute

This element specifies a credential attribute that is used for verifier-driven revocation. In case of multiple
attributes specified, the User proves that a disjunctive combination of the attribute values was non-revoked
with respect to abc:RevocationInformationUID.

.../abc:PresentationTokenDescription/abc:VerifierDrivenRevocation/abc:Attribute/@Crede
ntialAlias

This attribute specifies the alias of the credential from which the attribute is used. The spec-
ified value MUST also occur as an Alias attribute in an abc:Credential element within this
abc:PresentationToken.

Page 59 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

.../abc:PresentationTokenDescription/abc:VerifierDrivenRevocation/abc:Attribute/@Attri
buteType

This attribute refers to the exact attribute within the credential which is used for verifier driven-revocation.

.../abc:PresentationTokenDescription/abc:AttributePredicate

This optional element specifies a predicate that is guaranteed to hold by this token. The child elements
are the ordered list of arguments of the predicate.

.../abc:AttributePredicate/@Function

This attribute specifies the boolean function for this predicate. See Section 4.4.3 for a list of supported
functions and their implications on the list of arguments in the child elements. Note that not all predicate
functions can be used for all attributes: the allowed predicate functions depend on the data type and on
the chosen encoding of the credential attributes. See Section 4.2.1 for a list of which predicates can be
used in combination with which data types and encodings.

.../abc:AttributePredicate/abc:Attribute

This element specifies a reference to a credential attribute that is used as an argument of the predicate.

.../abc:AttributePredicate/abc:Attribute/@CredentialAlias

This attribute specifies the alias of the credential from which the attribute is used. The spec-
ified value MUST also occur as an Alias attribute in an abc:Credential element within this
abc:PresentationToken.

.../abc:AttributePredicate/abc:Attribute/@AttributeType

This attribute refers to the exact attribute within the credential that is used as an argument in the
predicate.

.../abc:AttributePredicate/abc:Attribute/@DataHandlingPolicy

This optional XML attribute can be used to refer to an external data handling policy that the Verifier
has to adhere to with respect to the information that the attribute value satisfies the specified predicate.
The data handling policy may be human-readable and/or machine-readable. The specification of a data
handling policy schema is outside of the scope of this document.

.../abc:AttributePredicate/abc:ConstantValue

This element contains a constant value that is used as an argument in the predicate. The data type of the
argument depends on the function of the predicate. See Section 4.4.3 for a list of supported functions and
their implications on the list of arguments in the child elements.

/abc:PresentationToken/abc:CryptoEvidence

This element contains the cryptographic evidence for the presentation token.

4.4.3 Functions for Use in Predicates

When evaluating predicates over attributes in presentation/issuance policies and tokens, the following list
of function URIs from [Sta05] for (in)equality testing of different data types MUST be supported. We refer
to Appendix A of [Sta05] for the semantics of these functions and the data types of their arguments. In
order to prove predicates over credential attributes, the involved attributes MUST use the same encoding
(see Section 4.2.1).

Page 60 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

1 urn:oasis:names:tc:xacml:1.0:function:string−equal
2 urn:oasis:names:tc:xacml:1.0:function:boolean−equal
3 urn:oasis:names:tc:xacml:1.0:function:integer−equal
4 urn:oasis:names:tc:xacml:1.0:function:date−equal
5 urn:oasis:names:tc:xacml:1.0:function:time−equal
6 urn:oasis:names:tc:xacml:1.0:function:dateTime−equal
7 urn:oasis:names:tc:xacml:1.0:function:anyURI−equal
8 urn:oasis:names:tc:xacml:1.0:function:integer−greater−than
9 urn:oasis:names:tc:xacml:1.0:function:integer−greater−than−or−equal

10 urn:oasis:names:tc:xacml:1.0:function:integer−less−than
11 urn:oasis:names:tc:xacml:1.0:function:integer−less−than−or−equal
12 urn:oasis:names:tc:xacml:1.0:function:date−greater−than
13 urn:oasis:names:tc:xacml:1.0:function:date−greater−than−or−equal
14 urn:oasis:names:tc:xacml:1.0:function:date−less−than
15 urn:oasis:names:tc:xacml:1.0:function:date−less−than−or−equal
16 urn:oasis:names:tc:xacml:1.0:function:dateTime−greater−than
17 urn:oasis:names:tc:xacml:1.0:function:dateTime−greater−than−or−equal
18 urn:oasis:names:tc:xacml:1.0:function:dateTime−less−than
19 urn:oasis:names:tc:xacml:1.0:function:dateTime−less−than−or−equal

Moreover, this specification defines the following list of new functions for inequality testing.

1 urn:abc4trust:1.0:function:string−not−equal
2 urn:abc4trust:1.0:function:boolean−not−equal
3 urn:abc4trust:1.0:function:integer−not−equal
4 urn:abc4trust:1.0:function:date−not−equal
5 urn:abc4trust:1.0:function:time−not−equal
6 urn:abc4trust:1.0:function:dateTime−not−equal
7 urn:abc4trust:1.0:function:anyURI−not−equal

For type being one of string, boolean, integer, date, time, dateTime, or anyURI, the seman-
tics of function urn:abc4trust:1.0:function:type-not-equal is defined as follows. The function
SHALL take two arguments of data-type http://www.w3.org/2001/XMLSchema#type and SHALL return
an http://www.w3.org/2001/XMLSchema#boolean. The function SHALL return true if and only if
the application of the corresponding function urn:oasis:names:tc:xacml:1.0:function:type-equal
evaluated on the same arguments returns false. Otherwise, it SHALL return false.

Finally, this specification defines the following list of functions for testing equality against a list of candidate
values.

1 urn:abc4trust:1.0:function:string−equal−oneof
2 urn:abc4trust:1.0:function:boolean−equal−oneof
3 urn:abc4trust:1.0:function:integer−equal−oneof
4 urn:abc4trust:1.0:function:date−equal−oneof
5 urn:abc4trust:1.0:function:time−equal−oneof
6 urn:abc4trust:1.0:function:dateTime−equal−oneof
7 urn:abc4trust:1.0:function:anyURI−equal−oneof

For type being one of string, boolean, integer, date, time, dateTime, or anyURI, the semantics
of function urn:abc4trust:1.0:function:type-equal-oneof is defined as follows. The function SHALL
take two or more arguments of data-type http://www.w3.org/2001/XMLSchema#type and SHALL return
an http://www.w3.org/2001/XMLSchema#boolean. The function SHALL return true if and only if
the application of the corresponding function urn:oasis:names:tc:xacml:1.0:function:type-equal
evaluated on the first argument and one of the arguments other than the first returns true. Otherwise, it
SHALL return false.

Note that not all predicate functions can be used for all attributes: the allowed predicate functions depend
on the data type and on the chosen encoding of the credential attributes. See Section 4.2.1 for a list of
which predicates can be used in combination with which data types and encodings.

4.5 Issuance

Issuance of Privacy-ABCs is an interactive process between the User and the Issuer, possibly involving
multiple exchanges of messages. This document specifies the contents, encoding, and processing of the

Page 61 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

messages; an application needs to define how to exchange them, e.g., by embedding them in existing
messaging protocols. 4

An overview of a typical issuance interaction is given in Figure 6. The User initiates the interaction by
sending an issuance request to the Issuer, optionally specifying the requested credential specification UID.

In the simplest case, the credential is issued “from scratch”, i.e., without relation to any existing credentials.
Even in this case, the issuance protocol may consist of multiple exchanges of issuance messages.

In a more advanced setting, the new credential that is being issued may carry over attribute values, the
user secret from credentials that the User already owns, or may require attributes values to be generated
jointly at random. We refer to Section 2.6 for more details on the possibilities of advanced issuance
protocols.

In the advanced setting, the issuer responds to the initial request with its issuance policy, which specifies
which information the user must present in an issuance token in order to obtain the requested credential,
which features of existing credentials will be carried over to the new credential, and which attributes will
be generated jointly at random. The user responds with an issuance token. Then, a number of interaction
rounds may take place to perform the cryptographic issuance protocol. At the end of these rounds, the
Issuer sends the final message allowing the User to construct the issued credential.

Figure 6: Issuance of Privacy-ABCs

Some notes:

• The endpoint to contact, and its authentication requirements, are application specific. The issuance
protocol SHOULD be done over a secure channel to protect the confidentiality of the attribute
values.

• Since the exchange is multi-legged, the parties must keep the cryptographic state of each issuance
instance between the message exchanges.

4 For example, WS-Trust [Sta09b] specifies an issuance challenge-response pattern that can be used to carry the ABC
issuance messages, embedding them in RequestSecurityToken and RequestSecurityTokenResponse messages.

Page 62 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

User authentication is out of scope of this document. Authentication information MAY be provided along
the issuance messages.

4.5.1 Issuance Policy

Optionally, the Issuer may respond to the User’s initial request by sending the issuance policy. In an
issuance policy, the Issuer describes which credentials he will issue based on which issuance token presented
by the User. The newly issued credential can “carry over” certain features from the existing credentials
used in generating the issuance token, without revealing these features to the Issuer. Namely, the newly
issued credential can be bound to the same User, to the same device, or to the same revocation handle
as one of the existing credentials. Also, attribute values in the new credential can be carried over from
attributes in the existing credentials, without the Issuer being able to see these attribute values.

In case of simple issuance, i.e., where the User does not have to prove ownership of existing credentials or
established pseudonyms, the issuance policy merely specifies the credential specification and the issuer
parameters for the credential to be issued. The issuance policy is then used only locally by the Issuer to
trigger the issuance protocol.

1 <abc:IssuancePolicy Version="1.0">
2 <abc:PresentationPolicy ... > ... </abc:PresentationPolicy>?
3 <abc:CredentialTemplate SameKeyBindingAs="xs:anyURI"?>
4 <abc:CredentialSpecUID>...</abc:CredentialSpecUID>
5 <abc:IssuerParametersUID>...</abc:IssuerParametersUID>
6 <abc:UnknownAttributes>
7 <abc:CarriedOverAttribute TargetAttributeType="xs:anyURI">
8 <abc:SourceCredentialInfo Alias="xs:anyURI"
9 AttributeType="xs:anyURI"/>

10 </abc:CarriedOverAttribute>∗
11 <abc:JointlyRandomAttribute TargetAttributeType="xs:anyURI"/>∗
12 </abc:UnknownAttributes>?
13 </abc:CredentialTemplate>
14 </abc:IssuancePolicy>

The following describes the attributes and elements listed in the schema outlined above:

/abc:IssuancePolicy

This element describes an issuance policy.

/abc:IssuancePolicy/@Version

The version attribute has been made optional. It will be removed but currently is kept for backwards
compatibility. The version information should be taken from the schema itself rather than from this field.
For the current version of the schema, it must be set to "1.0".

/abc:IssuancePolicy/abc:PresentationPolicy

This optional element specifies which token has to be presented by the user in order to be issued a credential.
See the /abc:PresentationPolicyAlternatives/abc:PresentationPolicy element in Section 4.4.1 for
a description of the schema. The main goal of this policy and the issuance token returned in response of
it is to carry over features from the existing credentials used to generate the presentation token into the
newly issued credential.

Note that the presentation policy can also request for a self-signed of self-stated credential; see the
IssuerParametersUID element in the PresentationPolicy for details. Using this feature, the Issuer can
have self-signed and self-claimed attributes to be carried over into the newly issued credential. These
attribute values will be visible to the Issuer if the issuance policy explicitly specifies that they must be
revealed, or will be invisible to the Issuer otherwise.

/abc:IssuancePolicy/abc:CredentialTemplate/

This element provides a template for the to-be-issued credential. In case of simple issuance, it will only
specify the credential specification and the issuer parameters.

/abc:IssuancePolicy/abc:CredentialTemplate/@SameKeyBindingAs

Page 63 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

When present, this XML attribute causes the newly issued credential to be bound to the same key as one
of the credentials or pseudonyms in the presentation policy. The value of the attribute refers to the Alias
attribute of the Pseudonym or Credential from which the key must be carried over.

/abc:IssuancePolicy/abc:CredentialTemplate/abc:CredentialSpecUID

This element contains the unique identifier of the credential specification of the newly issued credential.

/abc:IssuancePolicy/abc:CredentialTemplate/abc:IssuerParametersUID

This element contains the unique identifier of the issuer parameters of the newly issued credential.

/abc:IssuancePolicy/abc:CredentialTemplate/abc:UnknownAttributes

This element specifies the attributes that are unknown to the Issuer and that will either be carried over
from another credential or jointly generated at random.

.../abc:CredentialTemplate/abc:UnknownAttributes/abc:CarriedOverAttribute

This element describes how an unknown attribute is established.

.../abc:UnknownAttributes/abc:CarriedOverAttribute/@TargetAttributeType

This attribute indicates to which attribute in the to-be-issued credential this template information applies
to.

.../abc:UnknownAttributes/abc:CarriedOverAttribute/abc:SourceCredentialInfo

This element contains information about the source credential to transfer the info from.

.../abc:CarriedOverAttribute/abc:SourceCredentialInfo/@Alias

This attribute indicates the alias of the presented credential from which to carry-over the attribute value.

.../abc:CarriedOverAttribute/abc:SourceCredentialInfo/@AttributeType

This attribute indicates the attribute type of the presented credential from which to carry-over the
attribute value (which could be different than the target attribute type, e.g., from the LastName attribute
of the DriverLicense credential to the GivenName attribute of the StudentCard credential).

.../abc:UnknownAttributes/abc:JointlyRandomAttribute

This element indicates that a specific attribute of the newly issued credential must be generated jointly at
random, i.e., so that the Issuer does not learn the value of the attribute, but so that the User cannot bias
the uniform distribution of the value.

.../abc:UnknownAttributes/abc:JointlyRandomAttribute/@TargetAttributeType

The attribute type of the newly issued credential that must be assigned a jointly generated random value.

4.5.2 Issuance Token

In case of advanced issuance, the User responds with an issuance token, that contains a presentation
token and credential template satisfying the issuance policy of the Issuer. In order to satisfy the policy,
the credential template in the issuance token must be the same as in the received issuance policy. See
Section 4.4.2 for the schema of the presentation token and Section 4.5.1 for the schema of the credential
template.

1 <abc:IssuanceToken Version="1.0">
2 <abc:IssuanceTokenDescription>
3 <abc:PresentationTokenDescription>
4 ...
5 </abc:PresentationTokenDescription>
6 <abc:CredentialTemplate SameKeyBindingAs="xs:anyURI"?>
7 ...
8 </abc:CredentialTemplate>
9 </abc:IssuanceTokenDescription>

10 <abc:CryptoEvidence>
11 ...
12 </abc:CryptoEvidence>
13 </abc:IssuanceToken>

Page 64 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

The following describes the attributes and elements listed in the schema outlined above:

/abc:IssuanceToken

This element describes an issuance token.

/abc:IssuanceToken/@Version

The version attribute has been made optional. It will be removed but currently is kept for backwards
compatibility. The version information should be taken from the schema itself rather than from this field.
For the current version of the schema, it must be set to "1.0".

/abc:IssuanceToken/abc:IssuanceTokenDescription

This element contains a technology-agnostic description of the revealed information and the new credential.

.../abc:IssuanceTokenDescription/abc:PresentationTokenDescription

This element contains a technology-agnostic description of the revealed information.

.../abc:IssuanceTokenDescription/abc:CredentialTemplate/

This element provides a template for the to-be-issued credential.

/abc:IssuanceToken/abc:CryptoEvidence/

This element provides the cryptographic evidence for the issuance token.

4.5.3 Issuance Messages

Any message that will be exchanged in the course of an issuance protocol is wrapped in an IssuanceMessage.
That includes the issuance policy and issuance token (if requested by the issuer), as well as the subsequent
interactions between the User and Issuer to execute the cryptographic protocol. The message contents in
the remaining flows of the issuance protocol are mechanism-specific and therefore treated as opaque pieces
of information that are exchanged between the Issuer and the User.

To allow the linkage of the different legs of a protocol, each message includes a Context attribute, which
must have the same value on all legs (including the possible preceding issuance policy/token exchange).

1 <abc:IssuanceMessage Context="...">
2 ...
3 </abc:IssuanceMessage>

The following describes the attributes and elements listed in the schema outlined above:

/abc:IssuanceMessage

This element contains either an issuance policy, issuance token or mechanism-specific cryptographic
issuance data.

/abc:IssuanceMessage/@Context

The message MUST contain a context attribute and its value MUST match the one from the initial
IssuanceMessage (if any).

4.5.4 Issuance Log Entries

To keep track of all issued credentials, the issuance log is stored on the issuer side. The issuance log entry
contains the verified issuance token (if requested by the issuer), as well as the attribute values specified by
the issuer.

Page 65 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

1 <abc:IssuanceLogEntry Version="1.0">
2 <abc:IssuanceLogEntryUID>...</abc:IssuanceLogEntryUID>
3 <abc:IssuerParametersUID>...</abc:IssuerParametersUID>
4 <abc:IssuanceToken> ... </abc:IssuanceToken>?
5 <abc:IssuerAttributes>
6 <abc:Attribute @Type="xs:anyURI">
7 <abc:AttributeValue>...</abc:AttributeValue>
8 </abc:Attribute>∗
9 </abc:IssuerAttributes>?

10 </abc:IssuanceLogEntry>

The following describes the attributes and elements listed in the schema outlined above:

/abc:IssuanceLogEntry

This element contains the verified issuance token (if requested by the issuer), as well as the attribute
values specified by the issuer.

/abc:IssuanceLogEntry/@Version

The version attribute has been made optional. It will be removed but currently is kept for backwards
compatibility. The version information should be taken from the schema itself rather than from this field.
For the current version of the schema, it must be set to "1.0".

/abc:IssuanceLogEntry/abc:IssuanceLogEntryUID

This element contains the identifier of the log entry.

/abc:IssuanceLogEntry/abc:IssuerParametersUID

This element contains the identifier of the Issuer’s parameters of the issued credential.

/abc:IssuanceLogEntry/abc:IssuanceToken

The is optional element contains the verified issuance token.

/abc:IssuanceLogEntry/abc:IssuerAttributes

This element contains the description of the attributes (if any) provided by the issuer in an issued
credential.

/abc:IssuanceLogEntry/abc:IssuerAttributes/abc:Attribute

This element contains the description of an attribute provided by the issuer in an issued credential.

/abc:IssuanceLogEntry/abc:IssuerAttributes/abc:Attribute/@Type

This attribute contains the unique identifier of the attribute type of this credential. The attribute type
is a URI, to which a semantics is associated by the definition of the attribute type. The definition of
attribute types is outside the scope of this document; we refer to Section 7.5 in [Sta09a] for examples.
The attribute type (e.g., http://example.com/firstname) is not to be confused with the data type (e.g.,
xs:string) that is specified by the DataType attribute in the CredentialSpecification.

.../abc:IssuerAttributes/abc:Attribute/abc:AttributeValue

This element contains the actual value of the issued credential attribute provided by the issuer.

4.5.5 Revocation History

To keep track of the revocation process on the upper level, the revocation history is stored on the revocation
authority side. Revocation history contains information, including cryptographic data that is used by
the revocation authority to support revocation (non-revocation evidence/revocation handle/revocation
information generation and updates, keeping track of revocable credentials).

Credentials that are a subject for the verifier-driven revocation are also called revocable in this context.
Registering a revocable credential means adding it to the list of the credentials that can be revoked by
the revocation authority. This can also include generating fresh revocation handle and/or non-revocation
evidence and updating revocation information, if required by the revocation mechanism. In case of
verifier-driven revocation, registration of valid attribute values is optional.

Page 66 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

1 <abc:RevocationHistory Version="1.0">
2 <abc:RevocationHistoryUID>...</abc:RevocationHistoryUID>
3 <abc:RevocationAuthorityParametersUID>...
4 </abc:RevocationAuthorityParametersUID>
5 <abc:CurrentState>...</abc:CurrentState>?
6 <abc:RevocationLogEntry @Revoked="xs:boolean">
7 <abc:RevocationLogEntryUID>...</abc:RevocationLogEntryUID>
8 <abc:RevocableAttribute @Type="xs:anyURI">
9 <abc:AttributeValue>...</abc:AttributeValue>

10 </abc:RevocableAttribute>∗
11 <abc:DateCreated>...</abc:DateCreated>
12 <abc:CryptoParameters>...</abc:CryptoParameters>?
13 </abc:RevocationLogEntry>?
14 </abc:RevocationHistory>

The following describes the attributes and elements listed in the schema outlined above:

/abc:RevocationHistory

This element contains the information that is used by the revocation authority to support revocation and
keep track of revocable credentials.

/abc:RevocationHistory/@Version

The version attribute has been made optional. It will be removed but currently is kept for backwards
compatibility. The version information should be taken from the schema itself rather than from this field.
For the current version of the schema, it must be set to "1.0".

/abc:RevocationHistory/abc:RevocationHistoryUID

This element contains the identifier of the revocation history.

/abc:RevocationHistory/abc:RevocationAuthorityParametersUID

This element contains the identifier of the revocation authority parameters.

/abc:RevocationHistory/abc:CurrentState

This optional element contains the information (can also contain cryptographic and revocation mechanism
specific data) that is used by the revocation authority to register and revoke credentials.

/abc:RevocationHistory/abc:RevocationLogEntry

This element contains information about credentials that were registered and revoked by the revocation
authority and the corresponding cryptographic data.

/abc:RevocationHistory/abc:RevocationLogEntry/@Revoked

This attribute indicates whether the revocation authority registered a new revocable credential or revoked
an existing one.

/abc:RevocationHistory/abc:RevocationLogEntry/abc:RevocationLogEntryUID

This element contains the identifier of the revocation log entry.

/abc:RevocationHistory/abc:RevocationLogEntry/abc:RevocableAttribute

This element contains the description of an attribute that is used to revoke the credential.

/abc:RevocationHistory/abc:RevocationLogEntry/abc:RevocableAttribute/@Type

This attribute contains the unique identifier of the attribute type of the credential attribute that is used
to revoke the credential. The attribute type is a URI, to which a semantics is associated by the definition
of the attribute type. The definition of attribute types is outside the scope of this document; we refer to
Section 7.5 in [Sta09a] for examples. The attribute type (e.g., http://example.com/firstname) is not
to be confused with the data type (e.g., xs:string) that is specified by the DataType attribute in the
CredentialSpecification.

.../abc:RevocationLogEntry/abc:Attribute/abc:AttributeValue

This element contains the actual value of the credential attribute that is used to revoke the credential. (In
case of issuer-driven revocation it contains a value of the revocation handle).

Page 67 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

/abc:RevocationHistory/abc:RevocationLogEntry/abc:DateCreated

This element contains a timestamp when the credential was registered or revoked by the revocation
authority.

/abc:RevocationHistory/abc:RevocationLogEntry/abc:CryptoParameters

This element contains mechanism-specific cryptographic data that is used to register or revoke credentials.

4.5.6 Credential Description

At the end of an issuance protocol, the User obtains a new credential. The contents of the new credential
are reported back through a CredentialDescription element that adheres to the following schema:

1 <abc:CredentialDescription RevokedByIssuer="xs:boolean"?>
2 <abc:CredentialUID>...</abc:CredentialUID>
3 <abc:FriendlyCredentialName lang="xs:language">
4 xs:string
5 </abc:FriendlyCredentialName>∗
6 <abc:ImageReference>xs:anyURI</abc:ImageReference>?
7 <abc:CredentialSpecificationUID>...</abc:CredentialSpecificationUID> <abc:IssuerParametersUID>...</abc:

IssuerParametersUID>
8 <abc:SecretReference>...</abc:SecretReference>?
9 <abc:Attribute>

10 <abc:AttributeUID>...</abc:AttributeUID>
11 <abc:AttributeDescription @Type="xs:anyURI" @DataType="xs:anyURI"
12 @Encoding="xs:anyURI">
13 <abc:FriendlyAttributeName lang="xs:language">
14 xs:string
15 </abc:FriendlyAttributeName>∗
16 <abc:AttributeValue>...</abc:AttributeValue>
17 </abc:AttributeDescription>
18 </abc:Attribute>∗
19 </abc:CredentialDescription>

The following describes the attributes and elements listed in the schema outlined above:

/abc:CredentialDescription

This element contains the description of an issued credential in a User’s credential portfolio.

/abc:CredentialDescription/@RevokedByIssuer

This flag indicates whether this credential was revoked by the issuer. This flag should be set to true as
soon as the user knows that this credential was revoked. This flag should be set to false (or omitted) for
non-revocable credentials. The default value of this flag is false.

The user’s credential store may treat revoked credentials differently than non-revoked ones, in particular it
may chose not to store them at all. Revoked credentials will also be skipped by the PolicyCredentialMatcher.

/abc:CredentialDescription/abc:CredentialUID

This element contains a unique local identifier (formatted as a URI) of the issued credential in the User’s
credential portfolio. This identifier acts solely as a local reference within the User’s system; it is never
included in a presentation token or in other artefacts sent across the network for obvious reasons of
linkability.

/abc:CredentialDescription/abc:FriendlyCredentialName

This optional element provides a friendly textual name for the credential. The content of this element
MUST be localized in a specific language.

/abc:CredentialDescription/abc:FriendlyCredentialName/@lang

A required language identifier, using the language codes specified in [Alv01], in which the content of
abc:FriendlyCredentialName element have been localized.

/abc:CredentialDescription/abc:ImageReference

This optional element contains a reference to the endpoint where the image for the credential can be
obtained.

Page 68 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

When implementing a Privacy-ABC system downloading images from the identity providers should be
handled carefully. The reference to the external image resource must not be used every time the credential
is presented. To avoid linkability when using the credential, the corresponding image must be downloaded
and stored locally at the User’s side during the issuance.

/abc:CredentialDescription/abc:CredentialSpecificationUID

This element contains the identifier of the credential specification (formatted as a URI) to which the
issued credential adheres.

/abc:CredentialDescription/abc:IssuerParametersUID

This element contains a reference to the issuer parameters of the Issuer who issued the credential.

/abc:CredentialDescription/abc:SecretReference

This optional element contains a unique local identifier (formatted as a URI) of the secret key to which
the credential is bound, in case key binding is enabled for this credential. A User may have multiple secret
keys; this reference helps in finding the key to which this credential is bound.

This identifier is just a reference to the secret key, not the secret key itself. It acts solely as a local
reference within the User’s system; it is never included in a presentation token or in other artefacts sent
across the network for obvious reasons of linkability.

/abc:CredentialDescription/abc:Attribute

This element contains the description of an attribute in an issued credential.

/abc:CredentialDescription/abc:Attribute/AttributeUID

This element contains a unique local identifier (formatted as a URI) of this attribute in this credential in
the User’s credential portfolio. This identifier acts solely as a local reference within the User’s system; it
is never included in a presentation token or in other artefacts sent across the network for obvious reasons
of linkability.

/abc:CredentialDescription/abc:Attribute/abc:AttributeDescription

This element contains the generic description of the attribute, as specified in the /abc:CredentialSpeci
fication/abc:AttributeDescriptions/abc:AttributeDescription element for this attribute in the
credential specification.

/abc:CredentialDescription/abc:Attribute/abc:AttributeDescription/@Type

This attribute contains the unique identifier of the attribute type of this credential. The attribute type
is a URI, to which a semantics is associated by the definition of the attribute type. The definition of
attribute types is outside the scope of this document; we refer to Section 7.5 in [Sta09a] for examples.
The attribute type (e.g., http://example.com/firstname) is not to be confused with the data type (e.g.,
xs:string) that is specified by the DataType attribute.

/abc:CredentialDescription/abc:Attribute/abc:AttributeDescription/@DataType

This attribute contains the data type of the credential attribute. The supported attribute data types are a
subset of XML Schema data types. We refer to Section 4.2.1 for an overview of the supported data types.

/abc:CredentialDescription/abc:Attribute/abc:AttributeDescription/@Encoding

To be embedded in a Privacy-ABC, credential attribute values must typically be mapped to fixed-length
integers. The Encoding XML attribute specifies how the value of this credential attribute is mapped to
such an integer. We refer to 4.2.1 for an overview of the supported encoding algorithms.

/abc:CredentialDescription/abc:Attribute/abc:FriendlyAttributeName

This optional element provides a friendly textual name for the attribute in the credential. The content of
this element MUST be localized in a specific language.

/abc:CredentialDescription/abc:Attribute/abc:FriendlyAttributeName/@lang

A required language identifier, using the language codes specified in [Alv01], in which the content of
abc:FriendlyAttributeName element have been localized.

Page 69 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

/abc:CredentialDescription/abc:Attribute/abc:AttributeValue

This element contains the actual value of the issued credential attribute.

4.6 Identity Selection and Credential Management

As mentioned in 3.1, the IdentitySelection component supports a User in choosing a preferred combination
of credentials and/or pseudonyms if there are different possibilities to satisfy a given presentation policy
or issuance policy. Also, this component is used to obtain User consent whenever personal data is revealed
during presentation or issuance.

In this section, we specify the formats for data that the ABC engine sends to the IdentitySelection
component, as well as the data formats that it expects in return. While the communication between the
ABC engine and the user interface is internal to the architecture, application developers may find it useful
to develop dedicated identity selection interface for their particular use case. That’s why we document
the data formats here.

The formats for data that are sent to the IdentitySelection component comprise a part that is common to
both credential presentation and credential issuance (see the <abc:data > XML element). This common
format is also suitable for data being sent to a (graphical) credential management component that allows
a User to display the content of her credential repository.

4.6.1 Presentation

4.6.1.1 Arguments sent to the UI for Presentation

1 <abc:UiPresentationArguments>
2 <abc:data>
3 <abc:credentialSpecifications>
4 <abc:credentialSpecification uri="xs:ID">
5 <abc:spec>...</abc:spec>
6 </abc:credentialSpecification>∗
7 </abc:credentialSpecifications>?
8 <abc:issuers>
9 <abc:issuer uri="xs:ID">

10 <abc:revocationAuthorityUri>xs:URI
11 </abc:revocationAuthorityUri>
12 <abc:description>
13 <abc:description>...</abc:description>∗
14 </abc:description>?
15 </abc:issuer>∗
16 </abc:issuers>?
17 <abc:revocationAuthorities>
18 <abc:revocationAuthority uri="xs:ID">
19 <abc:description>
20 <abc:description>...</abc:description>∗
21 </abc:description>?
22 </abc:revocationAuthority>∗
23 </abc:revocationAuthorities>?
24 <abc:credentials>
25 <abc:credential uri="xs:ID">
26 <abc:desc>...</abc:desc>
27 <abc:revocationAuthority ref="xs:IDREF" />
28 <abc:spec ref="xs:IDREF" />
29 <abc:issuer ref="xs:IDREF" />
30 </abc:credential>∗
31 </abc:credentials>?
32 <abc:pseudonyms>
33 <abc:pseudonym uri="xs:ID">
34 <abc:pseudonym Exclusive="xs:boolean" Scope="xs:string"
35 PseudonymUID="xs:anyURI">
36 <abc:PseudonymValue>xs:base64Binary</abc:PseudonymValue>?
37 <abc:SecretReference>xs:anyURI</abc:SecretReference>
38 </abc:pseudonym>
39 <abc:metadata>
40 <abc:HumanReadableData>xs:string</abc:HumanReadableData>
41 <abc:FriendlyPseudonymDescription>...
42 </abc:FriendlyPseudonymDescription>

Page 70 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

43 <abc:Metadata>...</abc:Metadata>
44 </abc:metadata>
45 </abc:pseudonym>∗
46 </abc:pseudonyms>?
47 <abc:inspectors>
48 <abc:inspector uri="xs:ID">
49 <abc:description>
50 <abc:description>...</abc:description>∗
51 </abc:description>?
52 </abc:inspector>∗
53 </abc:inspectors>?
54 </abc:data>
55 <abc:tokenCandidatesPerPolicy>
56 <abc:tokenCandidatePerPolicy policyId="xs:int">
57 <abc:policy>...</abc:policy>
58 <abc:tokenCandidates>
59 <abc:tokenCandidate candidateId="xs:int">
60 <abc:tokenDescription>...</abc:tokenDescription>
61 <abc:credentials>
62 <abc:credential ref="xs:IDREF" />∗
63 </abc:credentials>?
64 <abc:pseudonymCandidates>
65 <abc:pseudonymCandidate candidateId="xs:int">
66 <abc:pseudonyms>
67 <abc:pseudonym ref="xs:IDREF" />∗
68 </abc:pseudonyms>?
69 </abc:pseudonymCandidate>+
70 </abc:pseudonymCandidates>
71 <abc:revealedFacts>
72 <abc:revealedFact>
73 <abc:descriptions>
74 <abc:description>...</abc:description>∗
75 </abc:descriptions>?
76 </abc:revealedFact>∗
77 </abc:revealedFacts>?
78 <abc:revealedAttributeValues>
79 <abc:revealedAttributeValue>
80 <abc:descriptions>
81 <abc:description>...</abc:description>∗
82 </abc:descriptions>?
83 </abc:revealedAttributeValue>∗
84 </abc:revealedAttributeValues>?
85 <abc:inspectableAttributes>
86 <abc:inspectableAttribute>
87 <abc:credential ref="xs:IDREF" />∗
88 <abc:attributeType>xs:string</abc:attributeType>
89 <abc:dataHandlingPolicy>xs:string
90 </abc:dataHandlingPolicy>
91 <abc:inspectionGrounds>xs:string
92 </abc:inspectionGrounds>
93 <abc:inspectorAlternatives>
94 <abc:inspectorAlternative ref="xs:IDREF" />∗
95 </abc:inspectorAlternatives>?
96 </abc:inspectableAttribute>∗
97 </abc:inspectableAttributes>?
98 </abc:tokenCandidate>+
99 </abc:tokenCandidates>

100 </abc:tokenCandidatePerPolicy>+
101 </abc:tokenCandidatesPerPolicy>
102 </abc:UiPresentationArguments>

/abc:UiPresentationArguments

This XML root Element is sent by the ABC Engine to the user interface to perform identity selection for
presentation. The user interface must then choose which combination of credentials and/or pseudonyms,
all satisfying the policy, should be used to complete the presentation proof.

/abc:UiPresentationArguments/abc:data

This element contains information about all credential specifications, issuers, revocation authorities,
credentials, pseudonyms and inspectors that are used in this XML. Data under this element must not
appear twice. All data in this element should be referenced at least once in this XML.

/abc:UiPresentationArguments/abc:data/abc:credentialSpecifications

The wrapper for the list of credential specification.

Page 71 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

/abc:UiPresentationArguments/abc:data/abc:credentialSpecifications/abc:credentialSpeci
fication

An entry in the list of credential specifications.

/abc:UiPresentationArguments/abc:data/abc:credentialSpecifications/abc:credentialSpeci
fication/@uri

This element must contain the specificationUid of the credential specification in the spec element.
The subsequent XML code must refer to this credential specification by this uri.

/abc:UiPresentationArguments/abc:data/abc:credentialSpecifications/abc:spec

This element contains the actual credentialSpecification element, as output by the Key Manager.
The contents MUST be of the type /abc:CredentialSpecification.

/abc:UiPresentationArguments/abc:data/abc:issuers

Wrapper for the list of issuers.

/abc:UiPresentationArguments/abc:data/abc:issuers/abc:issuer

An entry in the list of issuers.

/abc:UiPresentationArguments/abc:data/abc:issuers/abc:issuer/@uri

This element must contain the parametersUid of the issuer parameters of this particular issuer. The
subsequent XML code must refer to this issuer by this uri.

/abc:UiPresentationArguments/abc:data/abc:issuers/abc:issuer/abc:revocationAuthorityUr
i

This element must contain a copy of the revocationParametersUID element of the issuer parameters of
this particular issuer.

/abc:UiPresentationArguments/abc:data/abc:issuers/abc:issuer/abc:description

Wrapper for the list of friendly issuer descriptions. The contents of this list must be a copy of the list of
friendlyIssuerDescriptions in the issuer parameters of this particular issuer.

/abc:UiPresentationArguments/abc:data/abc:issuers/abc:issuer/abc:description/abc:descr
iption

An entry in the list of friendly issuer descriptions. It must be a copy of the corresponding entry of
friendlyIssuerDescriptions in the issuer parameters of this particular issuer. The contents MUST be
of the type /abc:CredentialSpecification/abc:FriendlyCredentialName.

/abc:UiPresentationArguments/abc:data/abc:issuers/abc:issuer/abc:spec/@ref

This is a reference to the credential specification associated with this issuer. It must be equal to the
credentialSpecUID element of the issuer parameters of this particular issuer. It refers to /abc:UiPresent
ationArguments/abc:data/abc:credentialSpecifications/abc:credentialSpecification/@uri.

/abc:UiPresentationArguments/abc:data/abc:revocationAuthorities

Wrapper for the list of revocation authorities.

/abc:UiPresentationArguments/abc:data/abc:revocationAuthorities/abc:revocationAuthorit
y

An entry in the list of revocation authorities.

/abc:UiPresentationArguments/abc:data/abc:revocationAuthorities/abc:revocationAuthorit
y/@uri

This element must contain the parametersUid of the revocation authority parameters of this particular
revocation authority. The subsequent XML code must refer to this revocation authority by this uri.

/abc:UiPresentationArguments/abc:data/abc:revocationAuthorities/abc:revocationAuthorit
y/abc:description

Page 72 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Wrapper for the list of friendly revocation authority descriptions. Since revocation authorities don’t have
a friendly description yet, this element is currently unused. In the future, the contents of this list should
be a copy of the list of friendly descriptions in the revocation authority parameters of this particular
revocation authority.

/abc:UiPresentationArguments/abc:data/abc:revocationAuthorities/abc:revocationAuthorit
y/abc:description/abc:description

An entry in the list of friendly revocation authority descriptions. Currently, this element is unused.
In the future, it should be a copy of the corresponding entry of the friendly description in the revoca-
tion authority parameters of this particular revocation authority. The contents MUST be of the type
/abc:CredentialSpecification/abc:FriendlyCredentialName.

/abc:UiPresentationArguments/abc:data/abc:credentials

Wrapper for the list of credentials.

/abc:UiPresentationArguments/abc:data/abc:credentials/abc:credential

An entry in the list of credentials.

/abc:UiPresentationArguments/abc:data/abc:credentials/abc:credential/@uri

This element must contain the credentialUid of the credential description of this particular credential.
The subsequent XML code must refer to this credential by this uri.

/abc:UiPresentationArguments/abc:data/abc:credentials/abc:credential/abc:desc

This element contains the actual credentialDescription element corresponding to this credential, as
output by the Credential Manager. The contents MUST be of the type /abc:CredentialDescription.

/abc:UiPresentationArguments/abc:data/abc:credentials/abc:credential/abc:revocationAut
hority

Wrapper for the reference to the revocation authority responsible for issuer-driven revocation for this
credential.

/abc:UiPresentationArguments/abc:data/abc:credentials/abc:credential/abc:revocationAut
hority/@ref

This is a reference to the revocation authority responsible for issuer-driven revocation for this credential.
It must be equal to the revocationParametersUID element of the issuer parameters associated with this
credential. It refers to /abc:UiPresentationArguments/abc:data/abc:revocationAuthorities/abc:
revocationAuthority/@uri.

/abc:UiPresentationArguments/abc:data/abc:credentials/abc:credential/abc:spec

Wrapper for the reference to the credential specification of this credential.

/abc:UiPresentationArguments/abc:data/abc:credentials/abc:credential/abc:spec/@ref

This is a reference to the credential specification associated with this credential. It must be equal to the
credentialSpecificationUI element of the credential description of this credential. It refers to /abc:U
iPresentationArguments/abc:data/abc:credentialSpecifications/abc:credentialSpecificati
on/@uri.

/abc:UiPresentationArguments/abc:data/abc:credentials/abc:credential/abc:issuer

Wrapper for the reference to the issuer associated with this credential.

/abc:UiPresentationArguments/abc:data/abc:credentials/abc:credential/abc:issuer/@ref

This is a reference to the issuer associated with this credential. It must be equal to the
issuerParametersUID element of the credential description of this credential. It refers to
/abc:UiPresentationArguments/abc:data/abc:issuers/abc:issuer/@uri.

/abc:UiPresentationArguments/abc:data/abc:pseudonyms

Wrapper for the list of pseudonyms. This list contains:

Page 73 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

• pseudonyms that were retrieved from the Credential Manager

• each time that the policy allows the creation of a new pseudonym, this list will contain entries
corresponding to the newly created pseudonyms. If the policy does not restrict the secret these new
pseudonyms are bound to, then one pseudonym will be created for each secret in the Credential
Manager.

/abc:UiPresentationArguments/abc:data/abc:pseudonyms/abc:pseudonym

An entry in the list of pseudonyms.

/abc:UiPresentationArguments/abc:data/abc:pseudonyms/abc:pseudonym/@uri

This element must contain the pseudonymUID of this pseudonym. The subsequent XML code must refer
to this pseudonym by this uri.

/abc:UiPresentationArguments/abc:data/abc:pseudonyms/abc:pseudonym/abc:pseudonym

This element contains a description of the actual pseudonym.

For newly created pseudonyms, the fields SecretReference, Exclusive, Scope, and PseudonymUID will
be set automatically; the PseudonymValue field will be left out.

/abc:UiPresentationArguments/abc:data/abc:pseudonyms/abc:pseudonym/abc:pseudonym/@Excl
usive

A Boolean flag indicating whether this is a scope-exclusive pseudonym.

/abc:UiPresentationArguments/abc:data/abc:pseudonyms/abc:pseudonym/abc:pseudonym/@Scop
e

The scope of the pseudonym.

/abc:UiPresentationArguments/abc:data/abc:pseudonyms/abc:pseudonym/abc:pseudonym/@Pseu
donymUID

The UID of the pseudonym. This value must be exactly equal to
/abc:UiPresentationArguments/abc:data/abc:pseudonyms/abc:pseudonym/@uri. The reason
this element is there is because the client code might treat xs:ID and xs:anyURI types differently (in
particular, the xs:ID type might be hidden to the client code).

/abc:UiPresentationArguments/abc:data/abc:pseudonyms/abc:pseudonym/abc:pseudonym/abc:P
seudonymValue

This field contains the value of that pseudonym.

This field is mandatory for existing pseudonyms. For not-yet-created pseudonyms, this field MAY be
absent.

/abc:UiPresentationArguments/abc:data/abc:pseudonyms/abc:pseudonym/abc:pseudonym/abc:S
ecretReference

This field contains a reference to the secret used for key binding for this pseudonym.

/abc:UiPresentationArguments/abc:data/abc:pseudonyms/abc:pseudonym/abc:metadata

This element contains the metadata of the pseudonym. The UI is allowed to change the metadata of any
pseudonym.

For newly created pseudonyms, this element will consist of dummy values.

/abc:UiPresentationArguments/abc:data/abc:pseudonyms/abc:pseudonym/abc:metadata/abc:Hu
manReadableData

This field is deprecated, you should use /abc:UiPresentationArguments/abc:data/abc:pseudonyms/a
bc:pseudonym/abc:metadata/abc:FriendlyPseudonymDescription instead.

/abc:UiPresentationArguments/abc:data/abc:pseudonyms/abc:pseudonym/abc:metadata/abc:Fr
iendlyPseudonymDescription

Page 74 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Wrapper for the list of friendly descriptions for the pseudonyms. Each friendly description is of the same
type as /abc:IssuerParameters/abc:FriendlyIssuerDescription.

/abc:UiPresentationArguments/abc:data/abc:pseudonyms/abc:pseudonym/abc:metadata/abc:Me
tadata

This element contains arbitrary data.

/abc:UiPresentationArguments/abc:data/abc:inspectors

Wrapper for the list of inspectors.

/abc:UiPresentationArguments/abc:data/abc:inspectors/abc:inspector

An entry in the list of inspectors.

/abc:UiPresentationArguments/abc:data/abc:inspectors/abc:inspector/@uri

This element must contain the publicKeyUID of the public key of this inspector. The subsequent XML
code must refer to this inspector by this uri.

/abc:UiPresentationArguments/abc:data/abc:inspectors/abc:inspector/abc:description

Wrapper for the list of friendly inspector descriptions. The contents of this list must be a copy of the list
of friendlyInspectorDescriptions in the inspector public key of this inspector.

/abc:UiPresentationArguments/abc:data/abc:inspectors/abc:inspector/abc:description/abc:
description

An entry in the list of friendly inspector descriptions. It must be a copy of the corresponding entry of
friendlyInspectorDescriptions in the inspector public key of this particular inspector. The contents
MUST be of the type /abc:CredentialSpecification/abc:FriendlyCredentialName.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy

Wrapper for the list of token candidates per policy.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy

An entry in the list of token candidates per policy. Each entry refers to one of the policy alternatives.
Policy alternatives which cannot be satisfied are skipped.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
@policyId

An identifier for the tokencandidatePerPolicy. It is assigned sequentially, and is needed in the return
value.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:policy

A copy of the presentation policy to which this tokenCandidatePerPolicy refers to. The contents MUST
be of the type /abc:PresentationPolicyAlternatives/abc:PresentationPolicy.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates

Wrapper for the list of token candidates for this policy.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate

An entry in the list of token candidate for this policy. One token candidate is established for each
acceptable credential assignment.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/@candidateId

An identifier for this token candidate. It is assigned sequentially, and reset for each policy. It is needed in
the return value.

Page 75 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:tokenDescription

A partially filled out presentation token description for this candidate token. The pseudonym
choice and the inspector choice are not yet set. The contents MUST be of the type
/abc:PresentationToken/abc:PresentationTokenDescription.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:credentials

Wrapper for the list of credentials for this credential assignment of this candidate token. If no credentials
need to be shown in this policy, then this list will be empty.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:credentials/abc:credential

An entry in the list of credentials for the credential assignment of this candidate token. The n-th item
in this list corresponds to the n-th credential in the policy. Each entry is a wrapper for a reference to a
credential.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:credentials/abc:credential/@ref

A reference to a credential. This refers to /abc:UiPresentationArguments/abc:data/abc:credential
s/abc:credential/@uri.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:pseudonymCandidates

A wrapper for a list of alternative pseudonym assignments for this candidate token. This list also includes
pseudonyms assignments containing newly established pseudonyms.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:pseudonymCandidates/abc:pseudonymCandidate

An entry in the list of alternative pseudonym assignments for this candidate token. The user interface has
to chose one alternative among the ones proposed. If no pseudonyms need to be shown in this policy,
then the list will contain exactly one pseudonym candidate (consisting of an empty list of pseudonyms).

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:pseudonymCandidates/abc:pseudonymCandidate/
@candidateId

An identifier for this pseudonym candidate. It is assigned sequentially, and reset for each token candidate.
It is needed in the return value.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:pseudonymCandidates/abc:pseudonymCandidate/
abc:pseudonyms

A wrapper for the list of pseudonyms in this pseudonym candidate. If no pseudonyms need to be shown
in this policy, then the list will be empty.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:pseudonymCandidates/abc:pseudonymCandidate/
abc:pseudonyms/abc:pseudonym

An entry in the list of pseudonyms for this pseudonym candidate. The n-th item in this list corresponds
to the n-th pseudonym in the policy. Each entry is a wrapper for a reference to a pseudonym.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:pseudonymCandidates/abc:pseudonymCandidate/
abc:pseudonyms/abc:pseudonym/@ref

A reference to a pseudonym. It refers to /abc:UiPresentationArguments/abc:data/abc:pseudonyms/
abc:pseudonym/@uri.

Page 76 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:revealedFacts

A wrapper for the list of revealed facts for this token candidate. One or more revealed facts may be created
for each predicate in the presentation token, and describe what is being revealed on the cryptographic
layer (which might be more information than can be deduced from the presentation token description
alone).

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:revealedFacts/abc:revealedFact

An entry in the list of revealed facts for this token candidates.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:revealedFacts/abc:revealedFact/abc:descript
ions

A wrapper for a list of human-readable descriptions of this revealed fact. The entries all contain the same
description, with each entry being in a different language.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:revealedFacts/abc:revealedFact/abc:descript
ions/abc:description

An entry in the list of human-readable descriptions of this revealed fact. The contents MUST be of the
type /abc:CredentialSpecification/abc:FriendlyCredentialName.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:revealedAttributeValues

A wrapper for the list of revealed attribute values for this token candidate. There will be exactly one
entry for each attribute whose value is being revealed to the verifier by the crypto engine (which might be
more attributes than can be deduced from the presentation token description alone).

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:revealedAttributeValues/abc:revealedAttribu
teValue

An entry in the list of revealed attribute values for this token candidate.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:revealedAttributeValues/abc:revealedAttribu
teValue/abc:descriptions

A wrapper for a list of human-readable descriptions of this revealed attribute value. The entries contain
the same description, with each entry being in a different language.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:revealedAttributeValues/abc:revealedAttribu
teValue/abc:descriptions/abc:description

An entry in the list of human-readable descriptions of this revealed attribute. The contents MUST be of
the type /abc:CredentialSpecification/abc:FriendlyCredentialName.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:inspectableAttributes

A wrapper for the list of inspectable attributes in this token candidate.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:inspectableAttributes/abc:inspectableAttrib
ute

An entry in the list of inspectable attributes in this token candidate.

Page 77 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:inspectableAttributes/abc:inspectableAttrib
ute/abc:credential

A wrapper for the reference to the credential which contains this inspectable attribute.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:inspectableAttributes/abc:inspectableAttrib
ute/abc:credential/@ref

The reference to the credential which contains this inspectable attribute. It refers to
/abc:UiPresentationArguments/abc:data/abc:credentials/abc:credential/@uri.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:inspectableAttributes/abc:inspectableAttrib
ute/abc:attributeType

The attribute type of this inspectable attribute.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:inspectableAttributes/abc:inspectableAttrib
ute/abc:dataHandlingPolicy

A copy of the data handling policy for this inspectable attribute.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:inspectableAttributes/abc:inspectableAttrib
ute/abc:inspectionGrounds

A copy of the inspection grounds of this inspectable attribute.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:inspectableAttributes/abc:inspectableAttrib
ute/abc:inspectorAlternatives

A wrapper for the list of inspector alternatives for this inspectable attribute. For each inspectable attribute,
the user interface has to choose one inspector among this list.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:inspectableAttributes/abc:inspectableAttrib
ute/abc:inspectorAlternatives/abc:inspectorAlternative

An entry in the list of inspector alternatives for this inspectable attribute. This entry is a wrapper to a
reference to an inspector.

/abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/
abc:tokenCandidates/abc:tokenCandidate/abc:inspectableAttributes/abc:inspectableAttrib
ute/abc:inspectorAlternatives/abc:inspectorAlternative/@ref

Reference to an inspector for this inspectable attribute among the list of possible alternatives. It refers to
/abc:UiPresentationArguments/abc:data/abc:inspectors/abc:inspector/@uri.

4.6.1.2 Return Value sent by the UI for Presentation

1 <abc:UiPresentationReturn>
2 <abc:chosenPolicy>xs:int</abc:chosenPolicy>
3 <abc:chosenPresentationToken>xs:int</abc:chosenPresentationToken>
4 <abc:metadataToChange>
5 <abc:entry>
6 <abc:key>xs:string</abc:key>
7 <abc:value>...</abc:value>
8 </abc:entry>∗
9 </abc:metadataToChange>

10 <abc:chosenPseudonymList>xs:int</abc:chosenPseudonymList>?
11 <abc:chosenInspectors>xs:string</abc:chosenInspectors>∗
12 </abc:UiPresentationReturn>

Page 78 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

/abc:UiPresentationReturn

This XML root Element that the user interface sends back to the ABC Engine to complete identity
selection for presentation. It contains the choice of credentials and pseudonyms that should be used to
complete the presentation proof.

/abc:UiPresentationReturn/abc:chosenPolicy

The ID of the policy chosen by the user interface. It refers to /abc:UiPresentationArguments/abc:tok
enCandidatesPerPolicy/abc:tokenCandidatePerPolicy/@policyId.

/abc:UiPresentationReturn/abc:chosenPresentationToken

The ID of the presentation token candidate (within the selected policy) chosen by the user interface. It
refers to /abc:UiPresentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePer
Policy/abc:tokenCandidates/abc:tokenCandidate/@candidateId.

/abc:UiPresentationReturn/abc:metadataToChange

This element contains a list of entries (key-value pairs) of PseudonymMetadata that the user interface
wishes to change. It should contain an entry for all newly created pseudonyms which were selected.

/abc:UiPresentationReturn/abc:metadataToChange/abc:entry

A key-value pair.

/abc:UiPresentationReturn/abc:metadataToChange/abc:entry/abc:key

The key corresponds to the pseudonymUID of the pseudonym whose
metatdata the user interface wishes to change. It refers to
/abc:UiPresentationArguments/abc:data/abc:pseudonyms/abc:pseudonym/@uri.

/abc:UiPresentationReturn/abc:metadataToChange/abc:entry/abc:value

The value corresponds to the new metadata of the pseudonym. The ABC Engine will instruct the
Credential Manager to replace the old metadata of that pseudonym by the given value. The user interface
should take the value in /abc:UiPresentationArguments/abc:data/abc:pseudonyms/abc:pseudonym
/abc:metadata as a template for creating the new metadata. The contents MUST be of the type /abc:U
iPresentationArguments/abc:data/abc:pseudonyms/abc:pseudonym/abc:metadata.

/abc:UiPresentationReturn/abc:chosenPseudonymList

The ID of the chosen pseudonym candidate list (for the chosen candidate token). It refers to /abc:UiPre
sentationArguments/abc:tokenCandidatesPerPolicy/abc:tokenCandidatePerPolicy/abc:tokenC
andidates/abc:tokenCandidate/abc:pseudonymCandidates/abc:pseudonymCandidate/@candidate
Id. If the policy does not require showing pseudonyms, then this field may be left out.

/abc:UiPresentationReturn/abc:chosenInspectors

The list of inspectors that the user interface chose. This list should contain one entry per inspectable
attribute (for the chosen candidate token). For each inspectable attribute, one inspector should be chosen
among the list of alternatives. The list entries must refer to /abc:UiPresentationArguments/abc:toke
nCandidatesPerPolicy/abc:tokenCandidatePerPolicy/abc:tokenCandidates/abc:tokenCandidat
e/abc:inspectableAttributes/abc:inspectableAttribute/abc:inspectorAlternatives/abc:ins
pectorAlternative/@ref.

4.6.2 Issuance

4.6.2.1 Arguments sent to the UI for Issuance

1 <abc:UiIssuanceArguments>
2 <abc:data>...</abc:data>
3 <abc:tokenCandidates>...</abc:tokenCandidates>
4 <abc:policy>...</abc:policy>
5 </abc:UiIssuanceArguments>

Page 79 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

/abc:UiIssuanceArguments

This XML root Element is sent by the ABC Engine to the user interface to perform identity selection for
issuance. The user interface must then choose which combination of credentials and/or pseudonyms, all
satisfying the policy, should be used to complete the issuance proof.

/abc:UiIssuanceArguments/abc:data

See /abc:UiPresentationArguments/abc:data.

/abc:UiIssuanceArguments/abc:tokenCandidates

The semantics of this element are analogous to /abc:UiPresentationArguments/abc:tokenCandida
tesPerPolicy/abc:tokenCandidatePerPolicy/abc:tokenCandidates, except that they refer to the
unique issuance policy instead of one alternative of the presentation policies. References therein point to
/abc:UiIssuanceArguments/abc:data and not to /abc:UiPresentationArguments/abc:data.

/abc:UiIssuanceArguments/abc:policy

This element contains a copy of the issuance policy. The contents MUST be of the type
/abc:IssuancePolicy.

1 <abc:UiIssuanceReturn>
2 <abc:chosenIssuanceToken>xs:int</abc:chosenIssuanceToken>
3 <abc:metadataToChange>
4 <abc:entry>
5 <abc:key>xs:string</abc:key>
6 <abc:value>...</abc:value>
7 </abc:entry>∗
8 </abc:metadataToChange>
9 <abc:chosenPseudonymList>xs:int</abc:chosenPseudonymList>?

10 <abc:chosenInspectors>xs:string</abc:chosenInspectors>∗
11 </abc:UiIssuanceReturn>

/abc:UiIssuanceReturn

This XML root element that the user interface sends back to the ABC Engine to complete identity selection
for issuance. It contains the choice of credentials and pseudonyms that should be used to complete the
issuance proof.

/abc:UiIssuanceReturn/abc:chosenIssuanceToken

The ID of the issuance token candidate chosen by the user interface. It refers to
/abc:UiIssuanceArguments/abc:tokenCandidates/abc:tokenCandidate/@candidateId.

/abc:UiIssuanceReturn/abc:metadataToChange

See /abc:UiPresentationReturn/abc:metadataToChange.

/abc:UiIssuanceReturn/abc:metadataToChange/abc:entry

See /abc:UiPresentationReturn/abc:metadataToChange/abc:entry.

/abc:UiIssuanceReturn/abc:metadataToChange/abc:entry/abc:key

The key corresponds to the pseudonymUID of the pseudonym whose metatdata the user interface wishes
to change. It refers to /abc:UiIssuanceArguments/abc:data/abc:pseudonyms/abc:pseudonym/@uri.

/abc:UiIssuanceReturn/abc:metadataToChange/abc:entry/abc:value

The value corresponds to the new metadata of the pseudonym. The ABC Engine will instruct the Credential
Manager to replace the old metadata of that pseudonym by the given value. The user interface should take
the value in /abc:UiIssuanceArguments/abc:data/abc:pseudonyms/abc:pseudonym/abc:metadata
as a template for creating the new metadata. The contents MUST be of the type
abc:PseudonymWithMetadata/abc:PseudonymMetadata.

/abc:UiIssuanceReturn/abc:chosenPseudonymList

The ID of the chosen pseudonym candidate list (for the chosen candidate token). It refers to /abc:UiIss
uanceArguments/abc:tokenCandidates/abc:tokenCandidate/abc:pseudonymCandidates/abc:pseu

Page 80 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

donymCandidate/@candidateId. If no pseudonym needs to be shown for this policy, this field may be
left out.

/abc:UiIssuanceReturn/abc:chosenInspectors

The list of inspectors that the user interface chose. This list should contain one entry per inspectable
attribute (for the chosen candidate token). For each inspectable attribute, one inspector should be chosen
among the list of alternatives. The list entries must refer to /abc:UiIssuanceArguments/abc:tokenCan
didates/abc:tokenCandidate/abc:inspectableAttributes/abc:inspectableAttribute/abc:insp
ectorAlternatives/abc:inspectorAlternative/@ref.

4.7 Formats Used By the Webservice API

Since the webservices can only take a single XML root element as input, several elements have been
constructed to combine previously defined elements.

4.7.1 CredentialSpecificationAndSystemParameters

1 <abc:CredentialSpecificationAndSystemParameters>
2 <abc:CredentialSpecification>...</abc:CredentialSpecifion>
3 <abc:SystemParameters>...</abc:SystemParameters>
4 </abc:CredentialSpecificationAndSystemParameters>

/abc:CredentialSpecificationAndSystemParameters

This XML root Element contains a credential specification and a set of system parameters.

/abc:CredentialSpecificationAndSystemParameters/abc:CredentialSpecification

Must be of type /abc:CredentialSpecification.

/abc:CredentialSpecificationAndSystemParameters/abc:SystemParameters

Must be of type /abc:SystemParameters.

4.7.2 IssuancePolicyAndAttributes

1 <abc:IssuancePolicyAndAttributes>
2 <abc:IssuancePolicy>...</abc:IssuancePolicy>
3 <abc:Attribute>...</abc:Attribute>∗
4 </abc:IssuancePolicyAndAttributes>

/abc:IssuancePolicyAndAttributes

This XML root Element contains an issuance policy and a number of attributes.

/abc:IssuancePolicyAndAttributes/abc:IssuancePolicy

Must be of type /abc:IssuancePolicy.

/abc:IssuancePolicyAndAttributes/abc:Attribute

Must be of type /abc:Attribute.

4.7.3 IssuanceMessageAndBoolean

1 <abc:IssuanceMessageAndBoolean>
2 <abc:IssuanceMessage>...</abc:IssuanceMessage>
3 <abc:LastMesage>xs:boolean</abc:LastMessage>
4 <abc:IssuanceLogEntryURI>xs:anyURI</abc:IssuanceLogEntryURI>
5 </abc:IssuanceMessageAndBoolean>

Page 81 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

/abc:IssuanceMessageAndBoolean

This XML root Element contains an issuance message, a boolean indicating if this is the last step of
issuance and an URI pointing to the relevant log entry.

/abc:IssuanceMessageAndBoolean/abc:IssuanceMessage

Must be of type /abc:IssuanceMessage.

/abc:IssuanceMessageAndBoolean/abc:LastMessage

Boolean indicating if this is the last message of the issuance protocol.

/abc:IssuanceMessageAndBoolean/abc:IssuanceLogEntryURI

URI pointing to the relevant IssuanceLogEntry in the issuer log.

4.7.4 RevocationReferences

1 <abc:RevocationReferences>
2 <abc:RevocationInfoReference>...</abc:RevocationInfoReference>
3 <abc:NonRevocationEvidenceReference>
4 ...
5 </abc:NonRevocationEvidenceReference>
6 <abc:NonRevocationEvidenceUpdate>...</abc:NonRevocationEvidenceUpdate>
7 </abc:RevocationReferences>

/abc:RevocationReferences

This element contains 3 References, describing an URL where revocation information can be obtained.

/abc:RevocationReferences/abc:RevocationInfoReference

Must be of type /abc:Reference.

/abc:RevocationReferences/abc:NonRevocationEvidenceReference

Must be of type /abc:Reference.

/abc:RevocationReferences/abc:NonRevocationEvidenceUpdateReference

Must be of type /abc:Reference.

4.7.5 PresentationPolicyAlternativesAndPresentationToken

1 <abc:PresentationPolicyAlternativesAndPresentationToken>
2 <abc:PresentationPolicyAlternatives>
3 ...
4 </abc:PresentationPolicyAlternatives>
5 <abc:PresentationToken>...</abc:PresentationToken>
6 </abc:PresentationPolicyAlternativesAndPresentationToken>

/abc:PresentationPolicyAlternativesAndPresentationToken

This element contains a PresentationPolicyAlternatives and a PresentationToken element.

/abc:PresentationPolicyAlternativesAndPresentationToken/abc:PresentationPolicyAlternat
ives

Must be of type /abc:PresentationPolicyAlternatives.

/abc:PresentationPolicyAlternativesAndPresentationToken/abc:PresentationToken

Must be of type /abc:PresentationToken.

Page 82 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

4.7.6 AttributeList

1 <abc:AttributeList>
2 <abc:Attributes>...</abc:Attributes>∗
3 </abc:AttributeList>

/abc:AttributeList

This element contains a list of Attributes, corresponding to List <Attribute >.

/abc:AttributeList/abc:Attributes

Must be of type /abc:Attribute.

4.7.7 ABCEBoolean

1 <abc:ABCEBoolean value="xs:boolean"/>

/abc:ABCEBoolean

This element is used to indicate boolean value, that is, either the value true or false.

/abc:ABCEBoolean/@value

This attribute states the value of the boolean.

4.7.8 URISet

1 <abc:URISet>
2 <abc:URI>xs:anyURI</abc:URI>∗
3 </abc:URISet>

/abc:URISet

This element contains a set of URIs, corresponding to Set <URI >.

/abc:URISet/abc:URI

This element contains a URI.

4.7.9 IssuerParametersInput

1 <abc:IssuerParametersInput Version="1.0">
2 <abc:ParametersUID>xs:anyURI</abc:ParametersUID>
3 <abc:FriendlyIssuerDescription lang="xs:language">
4 xs:string
5 </abc:FriendlyIssuerDescription>∗
6 <abc:AlgorithmID>xs:anyURI</abc:AlgorithmID>
7 <abc:HashAlgorithm>xs:anyURI</abc:HashAlgorithm>
8 <abc:RevocationParametersUID>xs:anyURI</abc:RevocationParametersUID>
9 </abc:IssuerParametersInput>

/abc:IssuerParametersInput

This element contains a subset of the elements that the element /abc:IssuerParameters contains.

/abc:IssuerParametersInput/abc:ParametersUID

See /abc:IssuerParameters/abc:ParametersUID.

/abc:IssuerParametersInput/abc:FriendlyIssuerDescription

See /abc:IssuerParameters/abc:FriendlyIssuerDescription.

/abc:IssuerParametersInput/abc:AlgorithmID

See /abc:IssuerParameters/abc:AlgorithmID.

Page 83 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

/abc:IssuerParametersInput/abc:HashAlgorithm

See /abc:IssuerParameters/abc:HashAlgorithm.

/abc:IssuerParametersInput/abc:RevocationParametersUID

See /abc:IssuerParameters/abc:RevocationParametersUID.

4.7.10 IssuanceReturn

1 <abc:IssuanceReturn>
2 <abc:IssuanceMessage>...</abc:IssuanceMessage>
3 <abc:CredentialDescription>...</abc:CredentialDescription>
4 <abc:UiIssuanceArguments>...</abc:UiIssuanceArguments>
5 </abc:IssuanceReturn>

/abc:IssuanceReturn

This element contains an issuance message, a credential description, and a UiIssuanceArguments element.

/abc:IssuanceReturn/abc:IssuanceMessage

See Section 4.5.3, Issuance Messages.

/abc:IssuanceReturn/abc:CredentialDescription

See Section 4.5.6, Credential Description.

/abc:IssuanceReturn/abc:UiIssuanceArguments

See Section 4.6.1.1, Arguments sent to the UI for Issuance.

Page 84 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

5 API for Privacy-ABCs

This chapter describes the application programming interfaces (API) of the ABCE layer, focusing solely
on the API that the ABCE layer exposes to the upper layers, in particular, to the application layer. This
information is mainly intended for application developers who want to build applications that make use of
ABCE technology.

The interfaces are described in an object-oriented fashion as a list of methods that take input parameters
of certain types and that produce an output of a certain return type. The data types of the input and
return types either refer to XML artifacts as defined in Chapter 4 or to simple XML Schema datatypes
such as boolean or string.

For ease of integration with applications built on top of our ABCE layer, the actual implementation
offers the top-level ABCE interfaces described below also as web services. The descriptions below must
therefore be mapped to descriptions in the Web Services Description Language (WSDL). Doing so is
straightforward, so for the sake of readability we stick to an object-oriented notation here.

5.1 ABCE methods for Users

boolean canBeSatisfied(PresentationPolicyAlternatives p)

On input of presentation policy alternatives, this method determines whether the user has the necessary
credentials and established pseudonyms to create a presentation token that satisfies the policy. If so, this
method returns true, otherwise, it returns false.

Path /user/canBeSatisfied/
HTTP Method POST
Input Type application/xml or text/xml
Input Format PresentationPolicyAlternatives
Output Type text/xml
Output Format ABCEBoolean

UiPresentationArguments createPresentationToken(PresentationPolicyAlternatives p)

On input of presentation policy alternatives, this method determines whether the user has the necessary
credentials and established pseudonyms to create a presentation token that satisfies the policy.

If there is at least one way in which the policy can be satisfied with the user’s credentials and
pseudonyms, this method returns an object that encodes the different alternatives. The caller then lets
the user choose her preferred way of satisfying the policy or let her cancel the transaction, for example
by displaying the relevant information in a (graphical) user interface called the identity selector. If the
presentation policy alternatives cannot be satisfied, this method returns an error.

Path /user/createPresentationToken/
HTTP Method POST
Input Type application/xml or text/xml
Input Format PresentationPolicyAlternatives
Output Type text/xml
Output Format UiPresentationArguments

PresentationToken createPresentationToken(UiPresentationReturn upr)

After the user has chosen her preferred way of satisfying the presentation policy in the identity selector,
she calls this method on input of the object encoding her choice.

Page 85 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

This method generates a presentation token that reflects this choice, and which satisfies the respective
presentation policy alternatives. The generated presentation token consists of two parts: (1) a description
of the token’s content, which largely repeats the information of the corresponding alternative in the
presentation policy; and (2) cryptographic evidence, which mainly consists of a non-interactive zero-
knowledge proof (using the Fiat-Shamir heuristic) that the user owns all the credentials and pseudonyms
referenced in the token, that all revocable credentials are not revoked, that all inspectable attributes were
encrypted correctly, and that all predicates hold. Furthermore, the presentation token contains a reference
to the policy alternative that the user chose to fulfil.

This method returns the generated presentation token.

Path /user/createPresentationTokenUi/
HTTP Method POST
Input Type application/xml or text/xml
Input Format UiPresentationReturn
Output Type text/xml
Output Format PresentationToken

IssuanceReturn issuanceProtocolStep(IssuanceMessage im)

This method performs one step in an interactive issuance protocol. It takes as input an issuance
message received from an issuer.

The method has exactly one of the following three return values: (1) an issuance message, which has
to be sent to the issuer; (2) a description of the newly issued credential — this return value indicates
that the protocol was completed successfully and that the newly issued credential was stored in the user’s
credential manager; (3) an object of type UiIssuanceArguments which encodes the user’s choices to satisfy
the issuance policy (and which, for example, is forwarded to an identity selection user interface). In
the latter case, the user must then call the other issuanceProtocolStep() method with an object that
reflects the selected choice.

During simple issuance, this method never returns an object of type of type UiIssuanceArguments.

Path /user/issuanceProtocolStep/
HTTP Method POST
Input Type application/xml or text/xml
Input Format IssuanceMessage
Output Type text/xml
Output Format IssuanceReturn

IssuanceMessage issuanceProtocolStep(UiIssuanceReturn uir)

This method is called during the issuance protocol after the other issuanceProtocolStep() method
returned an object of type UiIssuanceArguments, and after the user has made her choice (in the identity
selector) on how to satisfy the issuance policy.

The input to this method is an object which encodes the user’s choice on how to satisfy the issuance
policy. The method returns an issuance message, which has to be sent to the issuer.

Path /user/issuanceProtocolStepUi/
HTTP Method POST
Input Type application/xml or text/xml
Input Format UiIssuanceReturn
Output Type text/xml
Output Format IssuanceMessage

Page 86 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

void updateNonRevocationEvidence()

This method updates the non-revocation evidence associated to all credentials in the credential store.
Calling this method at regular time intervals reduces the likelihood of having to update non-revocation
evidence at the time of presentation, thereby not only speeding up the presentation process, but also
offering improved privacy as the Revocation Authority is no longer “pinged” at the moment of presentation.

Path /user/updateNonRevocationEvidence/
HTTP Method POST
Input Type application/xml or text/xml
Input Format None
Output Type text/xml
Output Format None

URI[] listCredentials()

This method returns an array of all unique credential identifiers (UIDs) available in the Credential
Manager.

Path /user/listCredentials/
HTTP Method GET
Output Type text/xml
Output Format URISet

CredentialDescription getCredentialDescription(URI credUid)

This method returns the description of the credential with the given unique identifier. The unique
credential identifier credUid is the identifier which was included in the credential description that was
returned at successful completion of the issuance protocol.

Path /user/getCredentialDescription/{credentialUid}
HTTP Method GET
Output Type text/xml
Output Format CredentialDescription

Path Parameter Parameter Type
credentialUid URI

boolean deleteCredential(URI credUid)

This method deletes the credential with the given identifier from the credential store. If deleting is not
possible (e.g. if the referred credential does not exist) the method returns false, and true otherwise.

Path /user/deleteCredential/
HTTP Method DELETE
Output Type text/xml
Output Format

ABCEBoolean

Query Parameter Parameter Type
credUid URI

Page 87 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

5.2 ABCE methods for Verifiers

PresentationTokenDescription verifyTokenAgainstPolicy (PresentationPolicyAlternatives
p, PresentationToken t, boolean store)

This method, on input of a presentation policy p and a presentation token t, checks whether the token
t satisfies the policy p and checks the validity of the cryptographic evidence included in token t. If both
checks succeed and store is set to true, this method stores the token in a dedicated store and returns
a description of the token that includes a unique identifier by means of which the token can later be
retrieved from the store. If both checks succeed and store is set to false, this method does not store the
token and returns the description of the token as-is. If one of the checks fails, this method returns a list of
error messages.

Path /verification/verifyTokenAgainstPolicy/
HTTP Method POST
Input Type application/xml or text/xml
Input Format PresentationPolicyAlternativesAndPresentationToken
Output Type text/xml
Output Format PresentationTokenDescription

Query Parameter Parameter Type
store String (“true” or “false)

PresentationToken getToken(URI tokenUid)

This method looks up a previously verified presentation token. The unique token identifier tokenUid
is the identifier that was included in the token description that was returned when the token was verified.

Path /verification/getToken/
HTTP Method GET
Output Type text/xml
Output Format PresentationToken

Query Parameter Parameter Type
tokenUID URI

boolean deleteToken(URI tokenUid)

This method deletes the previously verified presentation token referenced by the unique identifier
tokenuid. It returns true in case of successful deletion, and false otherwise.

Path /verification/deleteToken/
HTTP Method POST
Input Type application/xml or text/xml
Input Format None
Output Type text/xml
Output Format Boolean

Query Parameter Parameter Type
tokenUID URI

Page 88 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

5.3 ABCE methods for Issuers

SystemParameters setupSystemParameters(int keyLength, URI cryptoMechanism)

This method generates a fresh set of system parameters for the given key length, expressed as the
bitlength of an asymmetric key (e.g., 1024 or 2048 bits). Issuers can generate their own system parameters,
but can also reuse system parameters generated by a different entity. More typically, a central party (e.g.,
a standardization body) will generate and publish system parameters for a number of different key lengths
that will be used by many Issuers. Security levels 1024 and 2048 MUST be supported; other values MAY
also be supported.

Currently, the supported mechanism URIs are urn:abc4trust:1.0:algorithm:idemix for Identity
Mixer and urn:abc4trust:1.0:algorithm:uprove for U-Prove.

Path /issuer/setupSystemParameters/
HTTP Method GET
Output Type text/xml
Output Format SystemParameters

Query Parameter Name Query Parameter Type
securityLevel int
cryptoMechanism URI

IssuerParameters setupIssuerParameters(IssuerParametersInput ipi)

This method generates a fresh issuance key and the corresponding Issuer parameters. The
issuance key is stored in the Issuer’s key store, the Issuer parameters are returned as out-
put of the method. The input to this method specify the maximal number of attributes
maxatts that credentials issued with these parameters can contain, the system parameters
syspars, the unique identifier uid of the generated parameters, the hash algorithm identifier hash,
and, optionally, the parameters identifier for any Issuer-driven Revocation Authority.

Currently, the only supported hash algorithm is SHA-256 with identifier
urn:abc4trust:1.0:hashalgorithm:sha-256.

Path /issuer/setupIssuerParameters/
HTTP Method POST
Input Type application/xml or text/xml
Input Format

IssuerParametersInput
Output Type text/xml
Output Format IssuerParameters

(IssuanceMessage, boolean, URI) initIssuanceProtocol(IssuancePolicy ip, Attribute[]
atts)

This method is invoked by the issuer to initiate an issuance protocol based on the given issuance policy,
where the given list of attributes contains the values that are to be certified in the new credential.

This method returns an issuance message, which the issuer subsequently sends to the user. Recall
that all issuance messages contain a Context XML-attribute that uniquely references the instance of the
issuance protocol.

This method also returns a boolean value, which indicates whether this is the last mes-
sage of the issuance protocol. If this value is false, the issuer subsequently invokes the

Page 89 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

issuanceProtocolStep() method on the next incoming issuance message from the user. If this value
is true, the issuance protocol consisted of a single message: this is possible if the underlying credential
technology requires no interaction for issuance (e.g., Camenisch-Lysyanskaya) and if simple issuance is
used.

This method also returns the uid of the stored issuance log entry that contains an issuance token
together with the attribute values provided by the issuer to keep track of the issued credentials.

Path /issuer/initIssuanceProtocol/
HTTP Method POST
Input Type application/xml or text/xml
Input Format IssuancePolicyAndAttributes
Output Type text/xml
Output Format IssuanceMessageAndBoolean

(IssuanceMessage, boolean, URI) issuanceProtocolStep(IssuanceMessage m)

This method performs one step in the interactive issuance protocol. On input of an issuance message
received from a user, it returns an issuance message that is to be sent back to the user, a boolean indicating
whether this is the last message in the protocol, and (optionally) the uid of a newly-created issuance log
entry.

Path /issuer/issuanceProtocolStep/
HTTP Method POST
Input Type application/xml or text/xml
Input Format IssuanceMessage
Output Type text/xml
Output Format IssuanceMessageAndBoolean

IssuanceLogEntry getIssuanceLogEntry(URI issuanceEntryUid)

This method looks up an issuance log entry of previously issued credentials that contains a verified
issuance token together with the attribute values provided by the issuer. The issuance log entry iden-
tifierissuanceEntryUid is the identifier that was included in the issuance token description that was
returned when the token was verified.

Path /issuer/getIssuanceLogEntry/
HTTP Method GET
Output Type text/xml
Output Format IssuanceLogEntry

Query Parameter Name Query Parameter Type
issuanceEntryUid URI

5.4 ABCE methods for Revocation Authorities

RevocationAuthorityParameters setupRevocationAuthorityParameters(int
keyLength, URI cryptoMechanism, URI uid, RevocationInfoReference infoRef,
NonRevocationEvidenceReference evidenceRef, RevocationUpdateReference updateRef)

Page 90 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

For a given security level, expressed as the bitlength of an asymmetric RSA key, and revocation
mechanism, this method generates a fresh secret key for the Revocation Authority and corresponding public
Revocation Authority parameters, as well as the initial revocation information. The secret key is stored in
trusted storage. Also included in the returned Revocation Authority parameters are the given identifier
uid as well as the endpoints where Users, Verifiers and Issuers can obtain the latest revocation information
(infoRef), initial non-revocation evidence (evidenceRef), and updates to their non-revocation evidence
(updateRef). Security levels 1024 and 2048 MUST be supported; other values MAY also be supported.

Currently, the only supported revocation mechanism is based on Camenisch-Lysyanskaya accumulators
(cryptoMechanism is urn:idmx:3.0.0:block:revocation:cl).

Path /revocation/setupRevocationAuthorityParameters/
HTTP Method POST
Input Type Application/xml or text/xml
Input Format RevocationReferences
Output Type text/xml
Output Format RevocationAuthorityParameters

Query Parameter Parameter Type
keyLength int
cryptoMechanism URI
uid URI

NonRevocationEvidence generateNonRevocationEvidence(URI revParsUid, List<Attribute>
attributes)

This method creates up-to-date non-revocation evidence with respect to the given revocation authority
parameters and the given list of attribute values.

In the special case of issuer-driven revocation, the list of attributes must contain exactly one item: the
revocation handle. When the issuer calls this method during credential issuance, he leaves the attribute
value of the revocation handle blank; the non-revocation evidence will then contain the attribute value to
use in the new credential.

This method may also be queried by users who wish to update their non-revocation evidence. In
contrast to the generateNonRevocationEvidenceUpdate() method, this method is potentially more
efficient, but the user making the query will not be anonymous.

Depending on the revocation technology, this method may update the revocation information. If it
does, verifiers may need to fetch the latest revocation information after this method is called in order to
accept the non-revocation evidence in new credentials.

Path /revocation/generatenonrevocationevidence/{revParsUid}
HTTP Method POST
Input Type Application/xml or text/xml
Input Format AttributeList
Output Type text/xml
Output Format NonRevocationEvidence

Path Parameter Parameter Type
revParsUid URI

NonRevocationEvidenceUpdate generateNonRevocationEvidenceUpdate(URI revParsUid, int
epoch)

Page 91 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

This method generates information that allows a user to update the non-revocation evidence of one of
her credentials. This will allow her to prove non-revocation of her credential against the latest revocation
information. The user’s anonymity is preserved when calling this method.

The inputs to this method specify the identifier of the revocation authority parameters corresponding
to the non-revocation evidence to update; and the epoch of the revocation information that user’s
non-revocation evidence currently verifies against.

To ensure that the users’ certificates are reasonably up-to-date, they will have to call this method for
all their credentials at regular intervals (but at the latest when doing a presentation).

Path /revocation/generatenonrevocationevidenceupdate/{revPar
sUid}

HTTP Method POST
Output Type text/xml
Output Format NonRevocationEvidenceUpdate

Path Parameter Parameter Type
revParsUid URI

Query Parameter Parameter Type
epoch int

RevocationInformation updateRevocationInformation(URI revParsUid)

This method retrieves the latest revocation information associated with the given revocation authority.

To ensure that verifiers can detect revoked certificates in a timely manner, they will call this method
on all revocation authorities they know at regular intervals.

Path /revocation/getrevocationinformation/{revParsUid}
HTTP Method POST
Output Type text/xml
Output Format RevocationInformation

Path Parameter Parameter Type
revParsUid URI

RevocationInformation revoke(URI revParUid, List<Attribute>attributes)

This method revokes the attribute values specified by the given list of attributes with respect to the
given revocation authority parameters. If the list contains multiple attributes (and if the revocation
technology supports this), then the conjunction of these attribute values is revoked. That is, all credentials
that contain the combination of attribute values specified in the list are revoked.

In the special case of issuer-driven revocation, the list contains only a single attribute: the revocation
handle.

Verifiers have to obtain the latest revocation information from the respective revocation authority in
order to detect that the given combination of attributes was revoked.

Page 92 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Path /revocation/revoke/{revParsUid}
HTTP Method POST
Input Type Application/xml or text/xml
Input Format AttributeList
Output Type text/xml
Output Format RevocationInformation

Path Parameter Parameter Type
revParsUid URI

5.5 ABCE methods for Inspectors

InspectorPublicKey setupInspectorPublicKey(int keyLength, URI mechanism, URI uid)

This method generates a fresh decryption key and corresponding encryption key for the given security
level, expressed as the keylength of an asymmetric RSA key with comparable security, and cryptographic
mechanism. It stores the decryption key in the trusted storage and returns the inspector public key with
the given identifier uid. The identifier associated with the key will be used in presentation/issuance
policies as the unique reference to a particular Inspector.

Security levels 1024 and 2048 MUST be supported; other values MAY
also be supported. The only currently supported mechanism identifier is
urn:abc4trust:1.0:inspectionalgorithm:camenisch-shoup03.

Path /inspector/setupInspectorPublicKey/
HTTP Method POST
Output Type text/xml
Output Format InspectorPublicKey

Query Parameter Parameter Type
keyLength int
cryptoMechanism URI
uid URI

Attribute[] inspect(PresentationToken t)

This method takes as input a presentation token with inspectable attributes and returns the decrypted
attribute type-value pairs for which the Inspector has the inspection secret key.

Path /inspector/inspect/
HTTP Method POST
Input Type Application/xml or text/xml
Input Format PresentationToken
Output Type text/xml
Output Format AttributeList

Page 93 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

6 Crypto Architecture

6.1 Overview of Cryptographic Architecture

The main responsibilities of the Cryptographic Engine are to generate cryptographic key material, issue
new credentials by means of a two-party protocol, generate the cryptographic evidence for a Presentation
Token to prove that a user satisfies a Presentation Policy, and verify this evidence.

The Cryptographic Engine is shipped as a separate library and can operate without the Privacy-ABC
Engine. It replaces version 2 of IBM’s Identity Mixer (Idemix) Library. Its main advantage compared
to the old Idemix library is the increased modularity of its design. This modularity allowed us to
implement additional features, such as supporting U-Prove credentials, and a predicate for checking linear
combinations among attributes.

Structure In the Crypto Engine, we have made a clear distinction between the building blocks, which
implement the actual cryptographic algorithms, and the framework code, which is mostly cryptography-
agnostic. The Building Blocks interact with the framework and with each other through implementation-
agnostic interfaces. This clean separation allows one to easily substitute one implementation of a
cryptographic primitive with another—or to provide a new implementation of a existing cryptographic
primitive—and only minimally affect the framework code.

The framework comprises the following components:

• The Key Generation Orchestration, responsible for generating cryptographic key material.

• The Proof Generation Orchestration, which, with the help of the Proof Engine, is responsible for
generating the cryptographic evidence of a Presentation Token.

• The Proof Verification Orchestration, which, with the help of the Proof Engine, is responsible for
verifying the cryptographic evidence contained in a Presentation Token.

• The Issuance Orchestration, which is responsible for the whole process of issuing a credential. It
also uses the Proof Engine. This component operates in two modes: Issuer and Recipient.

• A Proof Engine, which is tasked with generating, and later verifying, a non-interactive zero-knowledge
proof. This component also operates in two modes: Prover and Verifier.

• A Building Block Factory, which keeps track of all known building blocks and is responsible for
returning the appropriate block or list of blocks for a given task.

• State Storage, for keeping the intermediate state during the issuance protocol.

The framework of the Crypto Engine also accesses several other components of the Privacy-ABC
Engine, such as the Credential Manager, the Key Manager, the Smartcard Manager, and the Revocation
Proxy. In case the Crypto Engine runs without a Privacy-ABC Engine, an alternative implementation of
these components must be provided.

In what follows, we describe how the various Orchestration components work. We then describe the
Proof Engine and the proof interface of the Building Blocks.

6.1.1 Key Generation Orchestration

Let us describe the generation of parameters/keys such as the System Parameters, the Issuer Key Pair,
Inspector Key Pair, and Revocation Authority Key Pair. For the Crypto Engine, this is stateless two-step
process: first, upon receiving a request from a user, the Key Generation (KG-) Orchestration generates a
Configuration Template and returns it to the user; second, the user submits the completed configuration
to the KG-Orchestration, which then initiates the generation of the actual parameters/keys.

In Figure 7 we depict the setup of an Issuer Key Pair as an example of the parameter/keys generation
process. The generation of System Parameters, or of a key pair of another entity is similar.

Page 94 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Crypto Engine Issuer

Crypto Engine Façade

Key
Generation
Orchestration

Building
Block
Factory

Signature
Building Blocks:

Uprove
Idemix

Credential
Manager

Key
Manager

Generate Key Pair
Configuration Template &
Generate Key Pair
(Issuer)

etc.

1.

2.

3.

4.
Configuration
Template

5.
Configuration

6.

7.

8.

10.
Issuer Key Pair

Secret Key

9. Public Key

Figure 7: Example of generating an Issuer Key Pair including the creation of the intermediate Key Pair
Configuration Template.

Template Generation The user starts by requesting a Key Pair Configuration Template (1) from
the Crypto Engine. This request is forwarded to the Key Generation Orchestration. The latter requests
the System Parameters from the Key Manager (2) as well as all signature Building Blocks from the
Building Block Factory (3). Further, it adds a few default entries to the Configuration Template, and asks
each signature Building Block in turn to add its own implementation-specific entries to the Configuration
Template. The Configuration Template is then returned to the user (4).

A template is configured with default values that serve as suggestion for a general purpose use; the
actual settings (including which implementation of a specific cryptographic primitive) must be set manually
and in accordance with the planned use. While all implementations of a given cryptographic primitive
can add parameters to the template; the user only needs to fill out the general entries and the entries
corresponding to the chosen implementation—the entries corresponding to non-chosen implementations
will be ignored.

Parameter Generation After completing the configuration by overriding the appropriate default
settings of the Template Configuration, the Crypto Engine must be called again to request the generation
of an Issuer Key Pair (5). The KG-Orchestration queries the Key Manager for the System Parameters
again (6), and the Building Block Factory for the chosen implementation of the signature Building Block
(7). It then asks that Building Block to generate an Issuer Key Pair based on the configuration. It then
stores the secret key of the pair in the Credential Manager (8), and the public key in the Key Manager
(9), before returning the whole key pair (10).

6.1.2 Presentation Orchestration

Let us now illustrate the generation of a Presentation Token as depicted in Figure 8.

When a user wants to create a Presentation Token she needs to pass the Presentation Token Description,
a list of credential URIs, and a list of pseudonym URIs to the Crypto Engine (recall that the credential and
pseudonym URIs have meaning only on the user’s machine, and might de-anonymize the user if exposed;

Page 95 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Crypto Engine User

Crypto Engine Façade

Proof
Orchestration

Building
Block
Factory

Proof
Engine

Building Blocks:

etc.

Uprove
Idemix
CS03

4sq. range proof

Smartcard
Manager

Credential
Manager

Key
Manager

Create Presentation Token
(User)

Presentation Token Description
{credential URI}
{pseudonym URI} Presentation Token

(with proof)1.

2.

3.
4.

5. 6.

7.

{Building Blocks}

{ZKModules} ZKProof

Figure 8: Creation of a Presentation Token.

these URIs must therefore not be included in the Presentation Token Description). These elements get
forwarded to the Proof Orchestration (1). The Proof Orchestration first fetches the credentials and
pseudonyms based on their URI from the Credential Manager (2). Second, it loads the System Parameters,
Issuer Public Keys, Credential Templates, Inspector Public Keys, and Revocation Authority Public Keys
from the Key Manager (3). Third, it queries the Building Block Factory for the Building Blocks required
for the Presentation Token at hand (4). For Building Blocks that have several implementations, the Proof
Orchestration may mandate a specific implementation, or it may ask the Building Block Factory for
any implementation that is supported by the verifier. For example, in Figure 8, the building blocks for
U-Prove and Identity Mixer signatures are displayed, as well as Camenisch-Shoup verifiable encryption
and the four-squares range proofs. In any case, the prover must record his choice of implementation so
that the verifier can retrieve the exact same Building Block.

The Proof Orchestration asks these Building Blocks each generate one or more Zero-knowledge–proof
Modules (ZkModules) (5), and configures each ZkModule with the appropriate parameters such as the
keys, credentials, or pseudonyms. These ZkModules will be used later inside the Proof Engine. Each
ZkModule will independently perform one part of the overall zero-knowledge proof and encapsulates
needed algorithms and state while exposing a uniform interface to the Proof Engine. We point out that
ZkModules responsible for proving ownership of a credential or a pseudonym receive a reference to the
Smartcard Manager, as they may delegate part of the proof process to the Smartcard Manager, which in
turn interacts with a smartcard to generate the proof elements needed during proof creation.

The Proof Orchestration then asks the Proof Engine to generate a Zero-knowledge Proof (6) supporting
the validity of the Presentation Token based on this list of ZkModules. The Proof Orchestration finally
updates the Presentation Token Description and then combines the former with the Zero-knowledge Proof
to form the final Presentation Token (7).

6.1.3 Verification Orchestration

In Figure 9 we show the verification of a Presentation Token.

After the verifier has matched the Presentation Token to the Presentation Policy, he sends the
Presentation Token to the Crypto Engine for cryptographic verification (1). The Crypto Engine forwards
the Presentation Token to the Proof Verification (PV-) Orchestration. The PV-Orchestration fetches
the relevant System Parameters, Issuer Public Keys, Credential Templates, Inspector Public Keys, and

Page 96 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Crypto Engine Verifier

Crypto Engine Façade

Proof Verif.
Orchestration

Building
Block
Factory

Proof
Engine

Building Blocks:

etc.

Uprove
Idemix
CS03

4sq. range proof

Smartcard
Helper

Key
Manager

Verify Token
(Verifier) Presentation Token

Verification result (boolean)1.

2.
3.

4. 5.

6.

{Building Blocks}

{ZKModules}
 ZKProof

Result (boolean)

Figure 9: Verification of a Presentation Token.

Revocation Authority Public Keys from the Key Manager (2). It then needs to fetch the same set of
Building Blocks from the Building Block Factory (3) as the prover did. Thereafter, it can generate a
list of ZkModules using these Building Blocks, where the ZkModules correspond to the ones generated
by the prover (4). The ZkModules for credentials and pseudonyms receive a reference to a Smartcard
Helper, which provides the functionality required to verify the part of the proof generated by a smartcard.
All ZkModules together with the Zero-knowledge Proof in the token are sent to the Proof Engine for
verification. The result of the verification (5) is then forwarded to the verifier (6).

6.1.4 Issuance Orchestration

We now describe the issuance protocol in the case of advanced issuance of a revocable credential where
the signing of the credential needs only one round (as is the case for CL signatures) and where no
jointly-random attributes are present. We point out that the issuance protocol continues for as many
rounds as the used signature building block specifies. Figures 10 and 12 show the issuance process on the
issuer’s side and Figures 11 and 13 show the process on the recipient of the credential’s side.

Issuer: First Issuance Message with Issuance Policy The first step of the issuance protocol
is shown in Figure 10.

The issuer invokes the Crypto Engine with an Issuance Policy and a list of issuer-set attributes (1).
The Crypto Engine forwards those to the Issuance Orchestration. The Issuance Orchestration saves the
Issuance Policy and list of attributes in the State Storage (2), wraps the Issuance Policy in an Issuance
Message, and returns that message to the issuer (3). The issuer should then transmit the message to the
recipient.

Recipient: Generate Issuance Token The second step of the issuance protocol is shown in
Figure 11.

The recipient must choose how to satisfy the Issuance Policy contained in the issuer’s Issuance Message
similar to when performing a presentation. The recipient then calls the Crypto Engine with the Issuance
Token Description, a list of credential URIs, a list of Pseudonym URIs, and the original Issuance Message
(4). These elements are forwarded to the Issuance Orchestration. The latter first checks with the State

Page 97 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Crypto Engine Issuer

Crypto Engine Façade

Issuance
Orchestration

Building
Block
Factory

Building Blocks:

etc.

Uprove
Idemix
CS03

4sq. range proof

Smartcard
Helper

Credential
Manager

Key
Manager

Initialize Issuance
(Issuer)

Proof Engine

Prover

Verifier

State
Storage

Revocation
ProxyAccumulator

Policy Token
Matcher

Token
Manager

Issuance Policy
{Attributes}

Issuance Message A
(Issuance Policy)

1. 3.

2.

Figure 10: Initiation of the issuance protocol on the issuer’s side.

Crypto Engine User

Crypto Engine Façade

Issuance
Orchestration

Building
Block
Factory

Building Blocks:

etc.

Uprove
Idemix
CS03

4sq. range proof

Smartcard
Manager

Credential
Manager

Key
Manager

Initialize Issuance

(User)

Proof Engine

Prover

Verifier State
Storage

Issuance Message A
(Issuance Policy)
Issuance Token Desc.
{Credential URI}
{Pseudonym URI}

Issuance Msg. B
(Issuance Token)

4.

5.

6.

7.

8.

9. 10. 11.

12.

Figure 11: Recipient computes an Issuance Token proving properties used for the credential to be
issued.

Page 98 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Storage that the Issuance Context (contained in the Issuance Message) has never been seen before (5).
Steps (6) to (10) are similar to a presentation proof (see Section 6.1.2), with the exception that the
Issuance Orchestration additionally generates a ZkModule from the signature building block that enables
the carry-over of attributes.

The Issuance Orchestration also retrieves state pertaining to the carry-over of attributes from the
aforementioned ZkModule after the Proof Engine finished the proof generation. It then completes the
Issuance Token Description with data generated during the proof, generates an Issuance Token from the
proof and the Issuance Token Description, wraps the Issuance Token in an Issuance Message, saves its
current state in the State Storage (11), and returns the Issuance Message to the recipient (12).

Issuer: Create Signature The third step of the issuance protocol is shown in Figure 12.

Crypto Engine Issuer

Crypto Engine Façade

Issuance
Orchestration

Building
Block
Factory

Building Blocks:

etc.

Uprove
Idemix
CS03

4sq. range proof

Smartcard
Helper

Credential
Manager

Key
Manager

Continue Issuance
(Issuer)

Proof Engine

Prover

Verifier

State
Storage

Revocation
ProxyAccumulator

Issuance Msg. B
(Issuance Token)

Issuance Msg. C
(ZKProof)

13.

14.

15. 16.

17.
18.

19.

20.
21.

22.
23.

24.

Figure 12: Issuer creates signature.

The issuer should forward the recipient’s Issuance Message (containing the Issuance Token) to his Crypto
Engine directly. The latter forwards it to the Issuance Orchestration (13). The Issuance Orchestration
first recovers the state associated with the Issuance Context from the State Storage (14). Then, it checks
the proof contained in the recipient’s Issuance Token similar to the PV-Orchestration (see Section 6.1.3)
(15)–(18).

If the verification succeeded, the Issuance Orchestration then recovers the Revocation Authority’s
Public Key from the Key Manager (19), the issuer’s Secret Key from the Credential Manager (20), and
a Building Block for revocation of the correct implementation from the Building Block Factory (21).
It then recovers state from the ZkModule for carry-over and uses that state to initialize a ZkModule
for issuance from the signature Building Block; that ZkModule is also initialized with the issuer-set
attributes, and the Issuer Secret Key. It also generates a ZkModule for issuance from the Building Block
for revocation. During creation time, the ZkModule contracts the Revocation Authority (through the
Revocation Proxy) to retrieve a new Revocation Handle and the associated Non-revocation Evidence. The
Issuance Orchestration then passes these two ZkModules to the Proof Engine (22).

During the proof generation, the ZkModule for signature issuance will blindly sign the new credential.
The Proof Engine returns the created zero-knowledge proof to the Issuance Orchestration (23). This
zero-knowledge proof also contains the issuer’s blind signature on the credential, the issuer-set attributes,

Page 99 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

the value of the Revocation Handle, and the Non-revocation Evidence. The Issuance Orchestration then
queries the ZkModule for signature issuance for the list of attribute values it knows about (including
the revocation handle), and generates an issuance log entry containing that list. Finally, it wraps the
zero-knowledge proof into an Issuance Message, and returns it to the issuer (24).

Recipient: Complete Credential The last step of the issuance protocol is shown in Figure 13.

Crypto Engine User

Crypto Engine Façade

Issuance
Orchestration

Building
Block
Factory

Building Blocks:

etc.

Uprove
Idemix
CS03

4sq. range proof

Smartcard
Manager

Credential
Manager

Key
Manager

Continue Issuance
(User)

Proof Engine

Prover

Verifier State
Storage

Issuance Msg. C
(ZKProof)

Credential
Description

25.

26.

27. 28.

29.
30.

31.

32.

Figure 13: Recipient finishes signature and stores credential.

The recipient should forward the issuer’s Issuance Message (containing the zero-knowledge proof) to
her Crypto Engine directly. The latter forwards it to the Issuance Orchestration (25). The Issuance
Orchestration first recovers the state associated with the Issuance Context from the State Storage (26),
retrieves the necessary parameters, specifications, and keys from the Key Manager (27). It then queries
for a Building Block for signatures and a Building Block for revocation of the appropriate implementation
from the Building Block Factory (28).

The Issuance Orchestration creates a ZkModule for signature issuance from the first Building Block,
initializing it with the issuer’s Public Key and state from the ZkModule for carry-over from last round. It
also creates a ZkModule for revocation issuance from the second Building Block. It then sends these two
ZkModules and the zero-knowledge proof to the Proof Engine for verification (29). After the Issuance
Orchestration gets back the results of the proof verification (30), it extracts the issuance state from
the ZkModule for signature issuance. It asks the signature Building Block to combine the states of
the ZkModule for issuance and the ZkModule for carry over from last round to generate the complete
credential, including signature and Non-revocation Evidence. It then saves the credential in the Credential
Manager (31) and returns the Credential Description to the recipient (32).

6.1.5 Building Blocks

The Building Blocks are singleton classes that implement the actual cryptographic algorithms. We have
defined an interface for Building Blocks for each of the cryptographic primitives (signatures, pseudonyms,
inspection, revocation, range proofs, not-equal proofs, set-membership proofs) plus a few interfaces for
helper Building Blocks (e.g., reveal attribute, attribute equality, add message to proof). There may be

Page 100 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

several implementations of a given cryptographic primitive (e.g., CL-signatures and U-Prove signatures),
but the Building Blocks corresponding to the various implementations expose the same interface to the
rest of the library. This strong encapsulation ensures the modularity of the library.

The Building Block for signatures for example has the following interfaces:

• Functions to populate a template for an Issuer Key Pair and to generate an Issuer Key Pair.

• One proof interface for presenting the signature (i.e., proving possession of the signature).

• One proof interface for carry-over, in which it is proven that a freshly generated commitment contains
all the user-specified or carried over attributes, and which allows the prover and verifier to extract
that commitment and later use the commitment for issuance.

• One proof interface for issuance, in which it is proven that a blind signature was performed correctly,
and which allows the verifier to extract the blind signature.

• Functions to continue with the issuance process after the issuance proof (used only for implementations
that have a multi-step issuance process, like U-Prove).

• A function that extracts a complete signature from the issuance proof.

• Bookkeeping functions, for example one that returns the identifier of the cryptographic primitive,
and one that returns the name of the implementation.

Other Building Blocks have interfaces that are adapted to the needs of the specific cryptographic
primitive they implement. The interface of helper Building Blocks typically comprises only a single proof
interface and the bookkeeping functions.

Proof Interfaces and ZkModules The proof interface of a Building Block consists of two functions:
one factory for so called prover ZkModule (zero-knowledge–proof modules) objects and one factory for
verifier ZkModule objects. These ZkModules are the actual objects that are sent to the Proof Engine.
Each ZkModule is responsible for performing one part of a zero-knowledge proof (for example the proof
of a single cryptographic commitment) without needing to explicitly care about interaction with other
ZkModules—it the Proof Engine’s responsibility to coordinate the ZkModules behind the scenes.

All prover ZkModules in the library expose the same interface towards the Proof Engine, allowing the
latter to handle them uniformly. (Some specialized ZkModules also have additional functions, for example
to retrieve values after the proof is completed, but those functions are not visible to the Proof Engine.)
This interface consists of four callback functions that are called sequentially by the Proof Engine during
the course of the proof:

• initializeModule, in which the ZkModule must tell the ZkBuilder (a component of the Proof
Engine) the name of all attributes it intends to use, the acceptable range of values each attribute can
take, whether each attribute should be revealed or not, whether it knows the value of that attribute
or not, whether this attribute is an external attribute (i.e., one which resides on a smartcard), and
whether it needs to know the value of some other attribute (provided by another ZkModule) before
it can set the value of that attribute. In this phase, the ZkModule may also declare that an attribute
is equal to another attribute (possibly an attribute that appears in another ZkModule).

• collectAttributes, in which the ZkModule must provide the value of all attributes for which it
knows that value (and where the ZkModule is allowed to query for the value of the attributes it
requested in the initialize phase).

• firstRound, in which the ZkModule must help the ZkBuilder perform the first phase of the zero-
knowledge proof, meaning, determine all the values that will be used to compute the challenge: the
ZkModule can ask if any of its attributes is revealed, query for the value of all revealed attributes,
and query for the R-Value (randomizers—see Table 6) of all unrevealed non-external attributes; and
must generate T-Values (commitment values). At this point the ZkModule may also add data to its
hash contribution by adding D-Values (which are delivered to the verifier) or N-Values (which are
not delivered to the verifier as he is supposed to know the value already).

Page 101 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

• secondRound, in which the ZkModule receives the value of the challenge from the ZkBuilder and
must provide the S-Value (response values) for all external attributes.

Table 6: Glossary for values inside a zero-knowledge proof. More details are given in Section 6.2.2.
Name Explanation
R-value Randomizers. The random values that replace the attribute values when computing the

T-values.
T-value Commitment values. Values that are derived from the R-Values and the statement to be

proven, and which will be used to compute the challenge (together with the D-values, N-
values, and revealed attributes).

D-value Delivered values. Values that are sent to the verifier together with the proof, and which are
also used to compute the challenge.

N-value Context values. Values that the prover and the verifier agree on during the proof and that
don’t need to be transmitted to the verifier. These values are also used to compute the chal-
lenge.

S-value Response values. Values that are computed based on the challenge.

Similarily, all verifier ZkModules expose the same interface towards the Proof Engine. This interface
consists of two callback functions that are called sequentially by the Proof Engine during the course of a
proof verification:

• initializeModule, in which the ZkModule must tell the ZkVerifier (a component of the Proof
Engine) the name of all attributes it intends to use, the acceptable range of values each attribute
can take, whether each attribute should be revealed or not, and whether it knows the value of that
attribute or not. In this phase, the ZkModule may also declare that an attribute is equal to another
attribute (possibly an attribute that appears in another ZkModule). The verifier ZkModule must
make the equivalent calls as the corresponding prover ZkModule in this function.

• verify, in which the ZkModule receives the value of the challenge, the S-Values of all of its attributes,
and the value of all revealed attributes; and must re-compute the T-Values. The ZkModule must
also provide the N-Values and may perform additional checks in this function (for example by doing
implementation-specific checks on the S-Values and D-Values).

6.1.6 Proof Engine

The Proof Engine is responsible for orchestrating the construction of a zero-knowledge proof following
the Fiat-Shamir heuristic on input a list of ZkModules. We designed the Proof Engine according to the
Builder pattern: the zero-knowledge proof is build step-by-step by the ZkBuilder (the builder in the
Builder pattern) following the directions of a ZkDirector class and of the individual ZkModules (both
collectively fulfilling the role of the director in the Builder pattern).

In Figure 14, we show the sequence diagram of the construction of a proof in the Proof Engine. The
ZkDirector’s role is simply to call the methods of the ZkModules and the ZkBuilder in the right order:

• First, it calls initializeModule on all ZkModules (with a reference to the ZkBuilder), so that the
latter can register their attributes with the ZkBuilder. The ZkBuilder needs to keep track of which
attributes are equal (and handle all equivalences implied by transitivity); and for each disjoint set of
attributes, it needs to keep track of the properties, such as acceptable range, whether the attributes
are external. The ZkBuilder will later also need to keep track of the attribute values, R-Values and
S-Values.

• Second, if some ZkModules need to know the value of attributes of other ZkModules, the ZkDirector
asks the ZkBuilder to topologically sort the ZkModules.

• Third, the ZkDirector calls collectAttributes on all ZkModules. In this phase, the ZkBuilder will
learn the value of all non-external attributes.

Page 102 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

ZkModule

Proof Engine (prover):
Build Proof

buildProof initializeModule

topologicallySortModules

collectAttributes

firstRound

computeChallenge
secondRound

serializeProof

registerAttribute(name, range, isExternal)
attributesAreEqual(name1, name2)
attributeIsRevealed(name)

setValueOfAttribute(name, value)
generateRValues

getRValueOfAttribute(name)

addTValue(name, value)
addDValue(name, value)

setSValueForAttribute(name, value)

addNValue(name, value)

ZkDirector ZkBuilder

for each
ZkModule

ZkModule

RValue

getChallenge
Challenge

ZkProofZkProof

for each
ZkModule

for each
ZkModule

for each
ZkModule

Figure 14: Sequence diagram for the construction of a proof in the Proof Engine.

Page 103 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

ZkModule

Proof Engine (verifier):
Verify Proof

buildProof collectAttributes

verify

checkHashContributions

registerAttribute(name, range, isExternal)
attributesAreEqual(name1, name2)
attributeIsRevealed(name)
enforceValueOfAttribute(name, value)

attributeIntegrityCheck
getChallenge

checkTValue(name, value)
checkNValue(name, value)

ZkDirector ZkVerifier

for each
ZkModule

Challenge

ResultResult

for each
ZkModule

getDValue(name)
DValue

getValueOfRevealedAttribute(name)
Value

getSValueOfAttribute(name)
SValue

Figure 15: Sequence diagram for the verification of a proof in the Proof Engine.

• Fourth, it asks the ZkBuilder to compute R-Values for all unrevealed non-external attributes.

• Fifth, it calls firstRound on all ZkModules. In this phase, the ZkBuilder learns the T-Values of all
equations in the proof and collects the D-Values and N-Values from the ZkModules.

• Sixth, it asks the ZkBuilder to compute the value of the challenge of the proof. This computation
requires two steps: the ZkBuilder computes a hash contribution for each ZkModule that includes all
the T-, N-, and D-Values (including revealed attributes) used by that ZkModule; and finally the
overall challenge is computed by hashing all hash contributions. After the ZkBuilder computed the
challenge, it also computes the S-Value of all unrevealed non-external attributes.

• Seventh, it calls secondRound on all ZkModules. In this phase, the ZkModules tell the ZkBuilder
the S-Values of all external attributes.

• Finally, it asks the ZkBuilder to build the zero-knowledge proof object from: the list of ZkModule
names, the list of ZkModule hash contributions, the list of D-Values (including revealed attributes),
and the list of S-Values.

The Proof Engine uses a similar construction for verifying a proof. In Figure 15, we show the sequence
diagram for the verification of a proof in the Proof Engine. The ZkDirector does the following:

• First, it calls collectAttributes on all ZkModules, so that the latter can register their attributes
with the ZkVerifier. The ZkVerifier needs to re-construct a similar attribute database as the ZkBuilder
during the construction of the proof. We note that for revealed attributes, the ZkModules may choose
to request a specific value of an attribute—if no ZkModule provides such a value, the corresponding
D-Value from the proof object is taken.

• Second, it asks the ZkVerifier to check that all S-Values are within their acceptable range. At this
point, the ZkVerifier also re-computes the value of the challenge from the list of hash contributions.

Page 104 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

• Third, it calls verify on all ZkModules. The ZkModules now have access to the value of the
challenge, the D-Values, and the S-Values; and must re-compute the T-Values and provide the
N-Values to the ZkVerifier. ZkModules may also perform additional checks with the D-Values and
S-Values (e.g., for the U-Prove signatures, the verifier must check that the U-Prove token —a
D-Value—sent by the prover is valid).

• Finally, it asks the ZkVerifier to check the hash contributions of all ZkModules. If the list of
re-computed hash contributions matches the list in the proof, the ZkVerifier reports that the proof
verification was successful.

6.2 Cryptographic Primitives

After describing the cryptographic architecture implemented within this project, we next give a detailed
summary of the diverse building blocks that are used. In particular, all the building blocks mentioned in
Figures 8, 9, 10 and 11 will be discussed in the following.

For each building block, we give a high-level description of the primitive and the security properties
that need to be satisfied, as well as a cryptographic description of the instantiations we use. However, we
refrain from giving implementation specific details for any of the building blocks, but refer the interested
reader to the documentation of the implementation [BCD+13].

6.2.1 Algebraic Background

We now briefly explain the mathematical background that is required for the rest of this chapter, as well
as the cryptographic hardness assumptions that underly the security proofs of the given instantiations.
Below, let Zn = {0, . . . , n− 1} denote the set of integers modulo n, and let Z∗n = {x ∈ Zn : gcd(x, n) = 1}.

Groups The concept of groups is central for all the primitives and protocols presented in the
following. Informally, a group is a set of elements, on which one can operate as one is used to from addition
on the integers: combining two elements yields another element of the group (the sum of two integers is
an integer), the order in which elements are combined does not matter (parentheses are not important for
addition), there is an element which does not change the value of any other element when combined with
that element (adding zero to any integer yields the very same integer), and for every element there is an
inverse element (there exists the negative inverse for every integer).

The following now formally defines this idea:
Definition 6.1. A pair (G,⊗), where G is a set and ⊗ is a binary operation, is called a group if the
following properties are satisfied:

Closure. For all a, b ∈ G the result a⊗ b ∈ G.
Associativity. For all a, b, c ∈ G it holds that (a⊗ b)⊗ c = a⊗ (b⊗ c).
Identity element. There exists e ∈ G such that for all a ∈ G it holds that a⊗ e = e⊗ a = a.

Inverse element. For all a ∈ G there exists an element b ∈ G such that a⊗ b = b⊗ a = e, where e is the
identity element.

Now and in the following, we will typically omit the binary operation when denoting the group, i.e.,
we will just write G instead of (G,⊗).

In cryptography, we are mainly concerned with finite groups, i.e., groups where G only contains a finite
number of elements, which we will assume for the rest of this chapter.

A group is called cyclic if there exists an element a ∈ G such that any element b ∈ G can be written as
b = a⊗ · · · ⊗ a = an for some positive integer n. In this case, a is called a generator of G. The smallest
positive integer such that e = an, where e is the identity element, is called the order of a, and the number
of elements in G is called the order of G.

Page 105 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Finally, for two elements a, b ∈ G we say that an integer n is the discrete logarithm of b in base a, if it
holds that b = an.

Hardness Assumptions The security of most cryptographic primitives cannot be proved directly
using information-theoretic arguments, but can only be proved assuming that solving some mathematical
task is computationally infeasible. Here, computationally infeasible means that no algorithm whose
running time is bounded by a polynomial in the length of its input, can solve the given task with more
than negligible probability, where a function is negligible if it vanishes faster than any inverse polynomial.

The following hardness assumptions have been analyzed for decades, and are widely believed to be
satisfied for the groups that we are going to use in the following descriptions.
Definition 6.2. Let G be a cyclic group, and let a be a generator of G. Given a random b ∈R G, the
discrete logarithm problem is to compute the discrete logarithm of b in base a, i.e., to find an integer n
such that b = an. The discrete logarithm assumption holds for G if no efficient (i.e., polynomial time)
algorithm can solve the discrete logarithm problem with more than negligible probability.
Definition 6.3. Let G be a cyclic group of order q, and let a be a generator of G. Let further be
x, y, z ∈R Zq. The decisional Diffie-Hellman problem is to distinguish (a, ax, ay, az) from (a, ax, ay, axy).
The decisional Diffie-Hellman assumption (DDH) holds for G if no efficient (i.e., polynomial time) algorithm
can solve the decisional Diffie-Hellman problem with non-negligibly higher success probability than 1/2.

The next assumption is related to factoring large integers, and is also commonly believed to be
computationally hard. It is a generalization of the RSA assumption [RSA78] and was introduced by
Fujisaki and Okamoto [FO97] and Barić and Pfitzmann [BP97].
Definition 6.4. Let n be a random safe RSA modulus, i.e., n = pq where p := 2p′ + 1, q := 2q′ + 1 and
p, q, p′, q′ are all primes, and p and q are about the same size. Then the strong RSA problem is to find,
given n and a random b ∈R Z∗n, an element a ∈R Z∗n and a positive integer e > 1 such that b = ae mod n.
The strong RSA assumption says that no efficient (i.e., polynomial time) algorithm can solve the strong
RSA problem with more than negligible probability.

The following assumption was first introduced by Paillier [Pai99].
Definition 6.5. Let n, p, q, p′, q′ be as in Definition 6.4. Let further G be the subgroup of Z∗n2 consisting
of all nth powers of elements in Z∗n2 , i.e., G := {an : a ∈ Z∗n2}. The decisional composite residuosity
problem is to, given n, distinguish random elements of Z∗n2 from random elements of G. The decisional
composite residuosity assumption says that no efficient (i.e., polynomial time) algorithm can solve the
decisional composite residuosity problem with more than negligible probability.

6.2.2 Zero-Knowledge Proofs of Knowledge

Zero-knowledge proofs of knowledge are a fundamental primitive for privacy-enhancing cryptography.
They are two-party protocols between a prover and a verifier, where the prover claims to know some secret
piece of information and needs to convince the verifier about this fact in a private manner.

Zero-knowledge proofs of knowledge have to satisfy the following security properties. First, correctness
says that honest provers can always convince honest verifiers. Furthermore, they have to satisfy the
following seemingly contradictory goals: On the one hand, soundness guarantees that a prover that can
convince the verifier really knows the claimed secret, except for a negligibly small probability. On the
other hand, the zero-knowledge property says that the proof does not reveal any information about the
secret to the verifier, except for what is already revealed by the claim itself.

What is typically being proved in our applications is knowledge of discrete logarithms or similar
statements. Now and in the following we use the notation introduced by Camenisch and Stadler [CS97] to
denote such proof in an abstract way. For instance, an expression like:

ZKP
[
(α, β, γ) : y1 = gα1 g

β
2 ∧ y2 = yα1 g

γ
3 ∧ α > 0

]

Page 106 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

denotes a zero-knowledge proof of knowledge of integers α, β, γ such that the relations on the right hand
side are satisfied. We stick to the convention that knowledge of values denoted by Greek letters has to be
proved, while all other values are assumed to be publicly known.

We next show how such proof goals are compiled to real-world protocols on hand of the following
simple example proof goal:

ZKP
[
(α, β) : y = gαhβ

]
, (1)

where g and h are generators of a group G of prime order q, and y is the public image. Let further be H a
collision resistant hash function such as, e.g., SHA-2, and descG be a description of the group G. Then
Figure 16 illustrates the protocol run.

Prover Verifier

ra, rb ∈R Zq
}

firstRound
t := grahrb

c := H((t), (y, g, h, descG), ())
}
computeChallenge

sa := ra + cα
}

secondRound
sb := rb + cβ

(c, (sa, sb))-

verify

t′ := gsahsby−c

Output accept if and only if:
c

?
= H((t′), (y, g, h, descG), ())

Figure 16: Protocol flow of the zero-knowledge proof of knowledge specified in (1). The given method
names correspond to those discussed in Section 6.1.6.

On hand of this example, we next explain the concepts of T-values, etc. that were introduced in
Table 6:

R-values. These are the internal random coins the prover draws. In Figure 16, the R-values are given by
ra and rb. R-values are never revealed to the verifier in the clear.

T-values. Using the R-values the T-values are computed, essentially by evaluating the proof goal on the
randomnesses instead of the secrets. T-values do not need to be sent to the verifier, but the verifier
can re-compute them himself. They are hashed in order to compute the challenge c for the proof. In
our example, the only T-value is t.

S-values. S-values are derived from the R-values, the challenge and the secrets. They are always computed
as a sum of an R-value and the product of the challenge and the respective secret value, cf. Figure 16.
S-values are sent to the verifier together with the challenge c. In our example, the S-values are given
by sa and sb.

N-values. N-values contain all public values that are required to perform the proof, and that are already
known to both parties before the proof starts. They typically specify the entire algebraic setting
such as the groups and group elements being used, as well as the public images for which the prover
claims to know the corresponding secrets. In Figure 16, the algebraic setting is given by g, h, descG
and the public image is given by y.

D-values. Finally, D-values are public values that are required to perform the proof, but that are not
already known to both parties before the proof starts. Such values often arise when algebraic claims
about secrets are to be proved, such as, e.g., α > 0 or α = βγ or the like. Technically, such proof
goals are realized by first reformulating such claims as claims related to discrete logarithms, i.e., to
claims of the form z = vµwν , etc.. In this case often temporary public values need to be computed,

Page 107 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

which are then added as D-values and which are also used when computing the challenge c. In our
example no D-values are required, and therefore the empty list is hashed in Figure 16.

For a deeper discussion of the design of efficient zero-knowledge proofs of knowledge for practically
relevant proof goals we refer the interested reader to the original literature, in particular Schnorr [Sch91]
and generalizations [FO97, DF02, CKY09], and Fiat and Shamir [FS87].

Four Square Range Proof Many practically relevant proof goals require a user to prove that
same secret value is larger (or smaller) than some threshold value. For instance, when claiming some
senior citizen discount, a user has to prove that his secret birth date was before some public reference
date. In this case, the proof goal contains an algebraic claim of the form α < date, where α is the secret
attribute specifying the birth date of the user. As stated before, such claims need to be rewritten to
discrete logarithm based claims before they can be proved efficiently.

By Lagrange’s Four Square Theorem, every non-negative integer can be written as the sum of four
squares, and this is obviously not the case for negative integers. Furthermore, efficient algorithms for
computing this decomposition are known in the literature [RS86]. Therefore, a proof goal of the form:

ZKP [(α, ρ) : y = gαhρ ∧ α > date]

can be rewritten to:
ZKP

[
(χ1, χ2, χ3, χ4, ρ) : y = gχ

2
1+χ

2
2+χ

2
3+χ

2
4+datehρ

]
,

where χ2
1 + χ2

2 + χ2
3 + χ2

4 = α− date.

Now, standard techniques found in the literature allow this to be rewritten to a conjunction of the
form z = vµwν , which can then be proved as discussed before. The complexity of such a proof is roughly
nine times the complexity of a proof for a statement of the form z = vµwν .

We refer the interested reader to the original literature [Lip03] for details.

6.2.3 Commitment Schemes

Informally, a commitment scheme can be seen as the digital equivalent of a sealed envelope: A party can
commit to a chosen value, while keeping it secret from others. The committing party can later reveal (or
open) the commitment to another party, which can verify the correctness of this opening.

There are three security requirements a commitment scheme has to satisfy. First, if an honest party
commits to a message and later opens the commitment to another party, the latter will always be convinced
that the opening is correct. This property is referred to as correctness. Second, the hiding property
guarantees that only given the commitment, one cannot learn any information about the contained
message. Third, it is infeasible to open a commitment to two different messages, i.e., to convince the
receiver that two different openings are correct for the same commitment. This property is known as
binding.

In our implementation, commitments are used in multiple places. They are used for advanced issuance
to make an issuance protocol depend on a preceding credential presentation proof. At presentation, a user
shows that he knows a credential, and additionally proves that the same attributes are contained in a
freshly computed commitment. Then, for issuance, the value contained in this commitment is injected
into the new credential. The hiding property guarantees that the issuer does not learn the attribute
value, while the binding property guarantees the issuer that he issues a credential on an attribute that
was already contained in a previous credential. Furthermore, we use commitments to realize protocol
extensions such as inequality proofs, i.e., to prove that an attribute is larger than some (potentially public)
other value. For this to be possible, we need commitment schemes that allow one to commit to arbitrarily
large integer values, which is the case for the scheme presented in the following.

Page 108 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Pedersen/Damgård-Fujisaki Commitments Our implementation uses the so-called Damgård-
Fujisaki-Okamoto scheme [DF02], which is a generalization of the Pedersen commitment scheme [Ped91]
to messages of arbitrary length.

Key generation. A commitment key is computed by drawing a random safe RSA modulus n, S randomly
in Z∗n and R1, . . . , RL randomly in 〈S〉.

Message space. The commitment scheme supports arbitrary messages in ZL.
Committing to a message. Given a message m = (m1, . . . ,mL), the commitment is computed as

follows:

1. Choose a random r ∈R [0, bn/4c] and

2. compute the commitment as com :=
∏L
i=1R

mi
i Sr mod n.

Verifying a commitment. Given a commitment com, a message m and an opening r, the validity can
be checked by checking whether the following equation is satisfied:

com
?
=

L∏
i=1

Rmi
i Sr mod n .

We note that it is important that the committing entity is not privy of the factorization of n. For our
instantiation, we can use R1, . . . , RL, S and n from the public key of an issuer.
Theorem 6.1 ([DF02]). Under the strong RSA assumption, the above commitment scheme is correct,
statistically hiding and computationally binding.

6.2.4 Blind Signature Schemes

A blind signature scheme allows a user to obtain signatures on messages (or attributes) from a signer,
without the signer learning the attributes he signed. As a non-digital example, one could think of the
following scenario. A voter privately makes his choice in a voting booth, and then puts his ballot into a
carbon paper envelope. He then authenticates himself towards the voting authorities, proving that he is
indeed eligible to vote, e.g., by showing his passport. The authorities approve this by signing the envelope,
and therefore also the ballot. The signed envelope is then put into the ballot box. Now, when counting
the votes, it can be verified whether or not a ballot was voted by an eligible voter, but the authorities
never learned the choice of any specific citizen.

Informally, a blind signature scheme should satisfy the following security properties. First, an honest
user should always be able to obtain a signature on messages of his choice. This property is referred to
as correctness. Second, blind issuance ensures that the signer does not learn any information about the
messages he signed. Third, untraceability guarantees that when proving possession of a blindly obtained
signature, this cannot be linked to a specific issuance session. Finally, the unforgeability under chosen
message attacks property says that only the signer is able to produce valid signatures, i.e., no other party
is able to produce a signature on a message that has not been signed by the signer before, even if it can
request signatures on arbitrary message of its choice.

Blind signatures are at the heart of all known anonymous credential systems. The scheme underlying
IBM’s idemix are so-called CL-signatures [CL02a], whereas the scheme underlying Microsoft’s U-Prove is
Brand’s blind signature scheme [Bra93].

CL-Signatures CL-signatures were first proposed by Camenisch and Lysyanskaya [CL02a]. They
are at the heart of IBM’s identity mixer (aka idemix), and many other real world applications such
as Direct Anonymous Attestation that allows one to remotely authenticate a machine while preserving
privacy.

Page 109 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

User Issuer

r ∈ [0, n]

t =
∏
j 6∈R

R
mj

j Sr

t -

ZKP

((µj)j 6∈R, o, ρ) : t = ∏
j 6∈R

R
µj

j S
ρ ∧ com =

∏
j∈C

R
µj

j S
o ∧ µj ∈ ±{0, 1}`m

v′ ∈R 1‖{0, 1}`v−1

e ∈R P ∩ 1‖{0, 1}`e−1

A =

(
Z

t
∏
i∈RR

mi
i Sv′

)1/e

(A, e, v′)�

ZKP

[
(ε, ν′) : A =

(
Z

t
∏
i∈RR

mi
i Sν′

)1/ε
]

Check that Z = AeSv
′

Check that e ∈ P ∩ 1‖{0, 1}`e−1
Output sig = (e,A, v = v′ + r)

Figure 17: Issuance of a signature for attributes (m1, . . . ,mL). In the first zero-knowledge proof, the
user acts as the prover, while in the second proof the issuer acts as the verifier. If any of the checks
fails or proofs fails, the protocol aborts.

Key generation. On input `n, choose an `n-bit RSA modulus n such that n := pq, p := 2p′ + 1,
q := 2q′+1, where p, q, p′, and q′ are primes. Choose, uniformly at random, R1, . . . , RL, S, Z ∈ QRn,
where QRn is the set of quadratic residues modulo n.

Output the public key (n,R1, . . . , RL, S, Z) and the secret key p.

Message space. Let `m be a parameter. The message space is the set

{(m1, . . . ,mL) : mi ∈ ±{0, 1}`m} .

Signing. Let `r, `e > `m + 2 and `v := `n + `m + `r be security parameters. A signature on messages
m1, . . . ,mL is then generated by the protocol depicted in Figure 17. There, R ⊆ {0, . . . , n − 1}
denotes the set of indices of the messages which are revealed to the signer, and C ⊆ {0, . . . , n−1}\R
denotes the set of indices of the messages which are to be carried over from a previous signature.
That is, as discussed earlier, the commitment com is the output of a preceding presentation proof,
and the values of the contained messages are carried over into the new signature, ensuring security
to both parties.

Signature presentation. When proving possession of a signature, the user can again decide to reveal a
subset R of the messages, and additionally generate a commitment com for a subset C of different
messages. The latter can then be used in a follow-up issuance session to show that the attributes
where actually blindly carried-over correctly as describe above.

Presentation is now done as follows:

1. The user first re-randomizes the signature (e,A, v) by choosing a random r ∈R [0, n] and
computing (e,A′ = AS−r, v′ = v + er). Note that A′ is statistically close to the uniform over
Z∗n and therefore does not leak any information to the verifier.

2. The user computes a commitment com to the attributes with indices in C as described in
Section 6.2.3.

Page 110 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

3. The user then sends A′ and com to the adversary.

4. The user and the verifier run the following zero-knowledge proof of knowledge:

ZKP
[
((µj)j 6∈R, ρ, ν

′, ε) : Z
∏
i∈R

R−mi
i = A′ε

∏
j 6∈R

R
µj

j S
ν′ ∧ com =

∏
j∈C

R
µj

j S
ρ ∧

∧
j 6∈R

µj ∈ ±{0, 1}`m ∧ 2`e−1 < ε < 2`e
]
.

5. The verifier accepts if and only if this proof output accept.

Theorem 6.2 ([CL02a]). Under the strong RSA assumption, the above scheme is secure against adaptive
chosen message attacks. Furthermore, for any polynomially bounded number of presentations, it is
computationally infeasible to link presentation sessions among each other, or presentation sessions to an
issuance session, even if verifiers and issuers collude.

The original scheme considered messages in the interval [0, 2`m − 1] . Here, however, we allow messages
to be from [−2`m + 1, 2`m − 1]. The only consequence of this is that we need to require that `e > `m + 2
holds instead of `e > `m + 1.

Brands Signatures The signature scheme presented in the following was introduced by
Brands [Bra93]. It is the core building block of Microsoft’s U-Prove anonymous credential system.

In the following, let H be a collision resistant hash function, i.e., it is hard to find to different values
which map to the same output.

Key generation. Choose random primes p and q such that q|(p− 1) and computing discrete logarithms
in the subgroup of order q of Z∗p is hard for the given security parameter. Choose further a random
generator g of this subgroup, and random values yi ∈R Zq for i = 0, . . . , L, and define gi := gyi for
all i.

Output the public key (g, p, q, g0, . . . , gL) and the secret key y0.

Message space. Let `m be such that 2`m < q. The message space is the set

{(m1, . . . ,mL) : mi ∈ {0, 1}`m} .

Signing. Using the same notation as for the signing algorithm in Section 6.2.4, Figure 18 shows how
messages can blindly be signed.

Signature presentation. Again using the notation from Section 6.2.4, knowledge of a signature is done
as follows:

1. The user computes a commitment com to the attributes with indices in C as described in
Section 6.2.3.

2. The user sends (h, z′, c′, r′) and com to the verifier.

3. The user and the verifier run the following zero-knowledge proof of knowledge:

ZKP
[
((µj)j 6∈R, σ, ρ) : h =

(
g0
∏
j∈R

gmi
i

∏
j 6∈R

g
µj

i

)σ
∧ com =

∏
j∈C

R
µj

j S
ρ
]
.

4. The verifier accepts if and only if c′ ?
= H(h, z′, gr

′
g−c

′

0 , hr
′
(z′)−c

′
) and the above proof output

accept.
Theorem 6.3. For any polynomially bounded number of presentations, it is infeasible to link presentation
sessions to an issuance session, even if verifiers and issuers collude.

Page 111 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

User Issuer

s ∈R Z∗q
v ∈R Zq
b1, b2 ∈R Zq
h = (g0

∏L
j=1 g

mj

j)s

t1 = gb10 g
b2

t2 = hb2

t′ =
∏
j 6∈R g

mj

j gv

t′ -

ZKP

((µj)j 6∈R, o, ν) : t′ = ∏
j 6∈R

g
µj

j g
ν ∧ com =

∏
j∈C

R
µj

j S
o

w ∈R Zq
a = gw

t = g0t
′∏

j∈R g
mj

j

b = tw

z = ty0

(a, b, z)�
z′ = (z/gv0)

s

a′ = t1a
b′ = (z′)b1t2(b/a

v)s

c′ = H(h, z′, a′, b′) ∈ Zq
c = c′ + b1 mod q

c -
r = cy0 + w mod q

r�
r′ = r + b2 mod q
Output sig = (s, h, z′, c′, r′)

Figure 18: Issuance of a signature for attributes (m1, . . . ,mL). In the zero-knowledge proof the user
acts as the prover. If any of the checks or proofs fails, the protocol aborts.

Note here that in contrast to CL-signatures it is possible to link multiple presentations of the same
signature among each other. This can easily be seen by the way presentations are done: there, the user
reveals parts of the signature to the verifier. Therefore, if presentations should be unlinkable, every
signature must only be used in a single presentation session.

Furthermore, note that there does not exist a formal proof that Brands signatures are unforgeable
under chosen message attacks. However, they have been well studied for almost two decades and are
widely believed to be secure.

6.2.5 Verifiable Encryption

Verifiable encryption is the cryptographic building block that makes inspection possible by allowing a user
to prove that the encrypted plaintext, the inspectable attribute, is identical to a committed or signed
value.

In public key encryption schemes, each user has two keys: a public key, which others can use to encrypt
message to this user, and a secret key, which the user can use to decrypt these ciphertexts. Such schemes
can be thought of as digital equivalents of standard letter boxes: Each other user can post a letter in this
box, but only the legitimate owner of the letter box is able to open it and extract the letter from the box.

Page 112 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Informally, the public key encryption schemes used for anonymous credentials have to satisfy the
following security properties. First, they have to be correct, i.e., decrypting a ciphertext always yields the
message that was originally encrypted. Second, they should be indistinguishable under chosen-ciphertext
attacks. This means, that given a ciphertext, no adversary knowing the public key but not the secret key
can tell which message got encrypted. This has to hold even if the adversary knows that the ciphertext is
an encrypted of one out of two adversarially chosen plaintexts, and if the adversary is allowed to obtain
decryptions of arbitrary different ciphertexts.

Verifiable encryption schemes are an extension of public key encryption schemes, where the sender is
additionally able to prove certain statements about the message he encrypted, without having to reveal
the message. In particular, a sender is able to prove that he knows the message contained in a ciphertext,
or, e.g., that the ciphertext contains the same message as a given commitment.

The Camenisch-Shoup Encryption Scheme The scheme described here was proposed by Ca-
menisch and Shoup [CS03a] and is a variation of an encryption scheme put forth by Cramer and
Shoup [CS02]. The scheme makes use of a keyed hash scheme H that uses a key hk, chosen at random from
an appropriate key space associated with the security parameter. Every hash function H ∈ H maps triples
of the form (u, e, L) to integers in the set [0, 2` − 1]. The hash functions have to be collision resistant, i.e.,
given a random hash key hk it is infeasible to find two different triples mapping to the same value.

We further define abs : Z∗n2 → Z∗n2 as the function mapping (a mod n2) to (n2−a mod n2) if a > n2/2,
and to (a mod n2), otherwise. Note that v2 ≡ (abs(v))2 holds for all v ∈ Z∗n2 .

Key generation. On input `n, choose an `n-bit RSA modulus n such that n := pq, p := 2p′ + 1,
q := 2q′ + 1, where p, q, p′, and q′ are primes. Let further n′ := p′q′. Choose random x1, x2, x3 ∈R
[0, bn2/4c], and a random g′ ∈R Z∗n2 , and compute g := (g′)2n, and yi := gxi , for i = 1, 2, 3.

Also, generate a hash key hk from the key space of the hash scheme H associated with the given
security parameter.

The public key is (hk, n, g, y1, y2, y3). The secret key is (hk, n, x1, x2, x3).

Message space. The message space is given by [0, n].

Encryption. To encrypt a message m with label L ∈ {0, 1}∗ under a public key as above, choose a
random r ∈R [0, bn/4c] and compute

u := gr , e := yr1(n+ 1)m , and v := abs
(
(y2y

H(u,e,L)
3)r

)
.

The ciphertext is (u, e, v).

Decryption. To decrypt a ciphertext (u, e, v) ∈ Z∗n2 × Z∗n2 × Z∗n2 with label L under a secret key as
above, first check that abs(v) ≡ v and u2(x2+H(u,e,L)x3) ≡ v2. If this does not hold, then output
reject and halt. Next, let t := 2−1 mod n, and compute m̂ := (e/ux1)2t. If m̂ is of the form hm for
some m ∈ [0, n], then output m; otherwise, output reject. This can efficiently be tested using the
fact that hm ≡ 1 +mn mod n2 for 0 ≤ m < n, and therefore in this case m = m̂−1

n .
Theorem 6.4. Under the decisional composite residuosity assumption and if the deployed hash function
is collision resistant, the scheme described above is indistinguishable under chosen-ciphertext attacks.

In a credential scheme, typically some attribute uniquely identifying the credential and/or the owner
of the credential is encrypted for a presentation proof, under the public key of some public authority
such as, e.g., a judge, commonly referred to as inspector. When presenting the credential, the user
additionally shows that the computed ciphertext is indeed the same as the corresponding attribute value
in the credential. While the user’s privacy is maintained, the verifier is thereby ensured that he has a
valid encryption of the user’s identity. Upon misbehavior of the user, the verifier can now request the
public authority to reveal the identity of the user by decrypting the ciphertext, and thus the user can,
e.g., be held accountable for any damage he caused.

Page 113 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

6.2.6 Scope-Exclusive Pseudonyms

Pseudonyms are aliases that users assume for particular applications or settings. That is, a user may be
known under different pseudonyms to different entities, such that those entities cannot decide whether
two pseudonyms belonged to the same user or not. A pseudonym is scope-exclusive, if for a given string
specifying the scope of the session, e.g., the URL of a webpage or the name of a service, the user can only
generate a unique pseudonym. This means that within a given scope users can be recognized, but that
they are still unlinkable across scopes. If for a certain service it is not required to be recognizable, the
scope can just be set to a fresh random string every time, thereby becoming fully unlinkable.

Technically, a user is identified with a secret key that is only known to that specific user. A scope-
exclusive pseudonym is then derived deterministically from the scope string and the user’s secret key.
Whenever a user gives a pseudonym to a verifier, he further proves that he knows the secret key that was
used to derive the pseudonym without revealing it.

Such a scheme has to satisfy the following security properties. The scheme must be complete, meaning
that an honest user deriving a pseudonym from his secret key can convince the verifier that he is indeed
privy of this secret key, i.e., that he owns the identity hidden behind the given pseudonym. On the
other hand soundness guarantees that only an honest user can convince a verifier about this fact. The
scope-exclusiveness property says that for each scope string, every user secret key maps to a unique
pseudonym. Collision resistance ensures that for every fixed scope, no two different identities map to the
same pseudonym. Finally, unlinkability says that given pseudonyms to two different scopes, it is infeasible
to decide whether or not they were derived from the same user secret key.

Efficient Scope Exclusive Pseudonyms In the following we present the algorithms for an efficient
pseudonym system.

Key generation. The public key of the scheme consists of a group G of prime order q, and a hash key
hk specifying a collision resistant hash function H as in Section 6.2.5.

User key generation. A user’s secret key is computed by randomly choosing an x ∈R Zq.
Pseudonym generation. Given a scope string scope and a user secret key x, the pseudonym is given

by nym := H(scope)x.

Pseudonym presentation. To convince a verifier that the user knows the identity behind a given
pseudonym, they perform the following zero-knowledge proof of knowledge:

ZKP [(χ) : nym = H(scope)χ] .

Theorem 6.5. Under the DDH-assumption for G and if the deployed hash function is collision resistant,
the given scope-exclusive pseudonym system is secure.

In practice, the user’s secret key is embedded as an attribute into a credential. Then, when presenting
a credential under a pseudonym, the user shows that the same user secret key was used in the presentation
of the credential and to derive the pseudonym.

6.2.7 Revocation

In real-world applications of anonymous credentials it is vital to have efficient means to revoke credentials.
On the one hand, users might want to revoke their credentials, e.g., if they loose the device they used
to store the credential, or if it gets stolen. On the other hand, service providers might want to revoke
credentials upon misbehavior such as credential sharing.

In a revocation scheme, a revocation authority gives secret pieces of information to every user, and
publishes some publicly available revocation information. Now, whenever presenting a credential, the user
simultaneously proves that his credential has not yet been revoked by showing that he possesses such an
unrevoked secret piece of information, and that this data is somehow linked to the presented credential.

Page 114 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Informally, revocation schemes have to satisfy the following security properties. First, correctness
ensures that honest holders of unrevoked credentials can always convince the verifier that this is indeed
the case. Second, by the soundness property, verifiers are ensured that holders of revoked credentials
cannot make them accept. Finally, to protect the user’s privacy, the zero-knowledge property guarantees
the user that no personal information is leaked to the verifier when proving that the credential has not
yet been revoked.

Camenisch-Lysyanskaya Accumulators The scheme described in the following was presented by
Camenisch and Lysysanskaya [CL02b]. On a very high level, the scheme works as follows: The revocation
authority publishes some revocation information v in Z∗n, and hands a secret pair (e, u) to the user,
where e > 1 is an integer, and u is an eth root of v, such that no two users receive the same e. If
a user wants to prove that his secret has not yet been revoked, he proves that he knows such a pair
(e, u) in a zero-knowledge manner. If a user’s secret key is to be revoked, the revocation authority just
computes a root of v, obtaining ve

−1

as the new revocation information. Unrevoked users can update their
pairs efficiently, while the revoked user would now have to compute a fresh root of the new revocation
information, as his secret exponent was “divided out”. However, the latter is impossible under the strong
RSA assumption, cf. Definition 6.4.

Key generation. The revocation authority, on input `n, chooses an `n-bit RSA modulus n such that
n := pq, p := 2p′+1, q := 2q′+1, where p, q, p′, and q′ are primes. It further chooses v, g, h ∈R QRn.
The public key is given by (u, g, h, n) and the secret key is given by (p, q).

Join. Whenever a new item is added to the accumulator, i.e., whenever a new credential is issued, the
revocation authority hands over a random prime e and u ∈ QRn such that ue ≡ v mod n. Using the
secret key, such a u can always be computed efficiently as u = ve

−1 mod (p−1)(q−1) using the extended
Euclidean algorithm.

Revoking a user. If a user’s certificate is to be revoked, the revocation authority updates the public
revocation information v as v := ve

′−1 mod (p−1)(q−1) mod n, where e′ denotes the exponent the user
received when he joined the group. The revocation authority then further published the value e′.

Updating the revocation information. Every time a user’s certificate gets revoked, all the remaining
users have to update their secret values u and e. Let therefore e′ denote the revoked value, vnew
be the new revocation information published by the revocation authority, and vold be the public
revocation information from before e′ was revoked.

In a first step, a user uses the extended Euclidean algorithm to compute integers a and b such that
ae+ be′ = 1. In a second step, the user then updates his private group element u to u := ubvanew.

Proving unrevokedness. A user can prove to a verifier that his certificate has not been revoked by
performing the following steps:

1. The user first draws r1, r2, r3 ∈R [0, bn/4c].
2. The user then computes Ce = gehr1 , Cu = uhr2 and Cr = gr2hr3 , which he sends to the verifier.

3. The user and the verifier together run the following zero-knowledge proof of knowledge:

ZKP
[
(ε, ρ1, ρ2, ρ3, φ, ψ) : Ce = gεhρ1 ∧ Cr = gρ2hρ3 ∧

v = Cεuh
−φ ∧ 1 = Cεrg

−φh−ψ
]
.

Here, the user uses r2e for φ and r3e for ψ.

4. The verifier accepts if and only if this proof output accept.
Theorem 6.6 ([CL02b]). Under the strong RSA assumption, the scheme described above is a secure
revocation scheme.

The above revocation scheme is linked to the credential scheme by embedding the user’s revocation
key e as an attribute into a credential. The user then shows that he knows an unrevoked revocation key,

Page 115 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

and that the very same key is contained in the credential, thereby proving that the credential has not
been revoked.

Page 116 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

7 A Case Study based on Privacy-ABCs

In this section, we illustrate the different artifacts in the language framework of Section 4 by means of an
example scenario of an online library. For the sake of space and readability, the artifact examples for the
scenario do not illustrate all the features of Privacy-ABCs. In the following, we will explicitly distinguish
between user attributes (as contained in a credential) and XML attributes (as defined by XML schema)
whenever they could be confused.

7.1 Example Scenario

The Republic of Utopia issues electronic identity cards to all of its citizens, containing their name, date of
birth, and the state in which they reside. These electronic identities are used for many applications, such
as interactions with government and businesses. It is therefore crucial that any card that is reported lost
or stolen will be quickly revoked.

All citizens of Utopia may sign up for one free digital membership card to the library of their state. To
obtain a library card, the applicant must present her valid identity card and reveal her state of residence,
but otherwise remains anonymous during the issuance of the library card.

The state library has a privacy-friendly online interface for borrowing both digital and paper books.
Readers can log in to the library website to anonymously browse and borrow books using their library
card based on Privacy-ABCs. Hardcopy books will be delivered in anonymous numbered mailboxes at
the post office; digital books are simply delivered electronically. If paper books are returned late or
damaged, however, the library must be able to identify the reader to impose an appropriate fine. Repeated
negligence can even lead to exclusion from borrowing further paper books—but borrowing digital books
always remains possible. Moreover, the library occasionally offers special conditions to readers of targeted
age groups, e.g., longer rental periods for readers under the age of twenty-six.

7.2 Credential Specification

A credential specification describes the common structure and possible features of credentials. Remember
that the Republic of Utopia issues electronic identity cards to its citizens containing their full name, state,
and date of birth. Note that libraries and other verifiers may target different age groups in different
policies, so hard-coding dedicated “over twenty-six” attributes would not be very sensible. Utopia may
issue Privacy-ABCs according to the credential specification shown below.

1 <CredentialSpecification KeyBinding="true" Revocable="true">
2 <SpecificationUID> urn:creds:id </SpecificationUID>
3 <AttributeDescriptions MaxLength="256">
4 <AttributeDescription Type="urn:creds:id:name" DataType="xs:string" Encoding="xenc:sha256">
5 <FriendlyAttributeName lang="EN"> Full Name </FriendlyAttributeName>
6 </AttributeDescription>
7 <AttributeDescription Type="urn:creds:id:state" DataType="xs:string" Encoding="xenc:sha256"/>
8 <AttributeDescription Type="urn:creds:id:bdate" DataType="xs:date" Encoding="date:unix:signed"/>
9 <AttributeDescription Type="urn:creds:id:cardnr" DataType="xs:integer" Encoding="integer:unsigned" />

10 <AttributeDescription Type="urn:revocationhandle" DataType="xs:integer" Encoding="integer:unsigned" />
11 </AttributeDescriptions>
12 </CredentialSpecification>

The XML attribute KeyBinding indicates that credentials adhering to this specification must be bound
to a secret key. The XML attribute Revocable being set to "true" indicates that the credentials will be
subject to issuer-driven revocation and hence must contain a special revocation handle attribute. The
assigned revocation authority is specified in the issuer parameters.

In our example, electronic identity cards contain a person’s full name, state, date of birth, and a
unique card number. The XML attributes Type, DataType, and Encoding respectively contain the unique
identifier for the user attribute type, for the data type, and for the encoding algorithm that specifies how
the value is to be mapped to an integer of the correct size. Attributes that may have values longer than

Page 117 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

MaxLength have to be hashed, as is done here for the name and state using SHA-256. The specification
can also define human-readable names for the user attributes in different languages (Line 5).

7.3 Issuer, Revocation, and System Parameters

The government of Utopia acts as issuer and revocation authority for the identity cards. It uses some
pre-generated system parameters

1 <SystemParameters>
2 <ParametersUID> urn:utopia:id:system </ParametersUID>
3 <CryptoParams> ... </CryptoParams>
4 </SystemParameters>

and generates an issuance key pair and publishes the following issuer parameters.

1 <IssuerParameters>
2 <ParametersUID> urn:utopia:id:issuer </ParametersUID>
3 <AlgorithmID> urn:com:microsoft:uprove </AlgorithmID>
4 <SystemParametersUID> urn:utopia:id:system </SystemParametersUID>
5 <MaximalNumberOfAttributes> 4 </MaximalNumberOfAttributes>
6 <HashAlgorithm> xenc:sha256 </HashAlgorithm>
7 <CryptoParams> ... </CryptoParams>
8 <RevocationParametersUID> urn:utopia:id:ra </RevocationParametersUID>
9 </IssuerParameters>

It also generates and publishes the following revocation authority parameters.

1 <RevocationAuthorityParameters>
2 <ParametersUID> urn:utopia:id:ra </ParametersUID>
3 <RevocationMechanism> urn:privacy−abc:accumulators:cl </RevocationMechanism>
4 <RevocationInfoReference ReferenceType="url"> https:utopia.gov/id/revauth/revinfo
5 </RevocationInfoReference>
6 <NonRevocationEvidenceReference ReferenceType="url"> https:utopia.gov/id/revauth/nrevevidence
7 </NonRevocationEvidenceReference>
8 <CryptoParams> ... </CryptoParams>
9 </RevocationAuthorityParameters>

The ParametersUID element assigns unique identifiers for the issuer and revocation authority pa-
rameters. The issuer parameters additionally specify the chosen cryptographic Privacy-ABC and hash
algorithm, the maximal number of attributes that credentials issued under these issuer parameters may
have, the parameter identifier of the system parameters that shall be used, and the parameters identifier
of the revocation authority that will manage the issuer-driven revocation. The CryptoParams contain
cryptographic algorithm-specific information about the public key.

When a credential is subject to issuer-driven revocation (as indicated in the credential specification), a
presentation token related to this credential must always contain a proof that the presented credential has
not been revoked. The issuer parameters above specify the revocation authority parameters that define
where the most recent revocation information can be fetched to compute and verify the proof.

7.4 Presentation and Issuance Policies with Basic Features

Assume that a user already possesses an identity card from the Republic of Utopia issued according to
the credential specification depicted above. To get her free library card the user must present her valid
identity card and reveal (only) the state attribute certified by the card. This results in the following
presentation policy. Note that, even though the state is encoded in the credential in hashed form, it is the
attribute itself that will be revealed in the presentation.

Page 118 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

1 <PresentationPolicy PolicyUID="libcard">
2 <Message>
3 <Nonce> bkQydHBQWDR4TUZzbXJKYUM= </Nonce>
4 </Message>
5 <Pseudonym Alias="nym" Scope="urn:library:issuance" Exclusive="true"/>
6 <Credential Alias="id" SameKeyBindingAs="nym">
7 <CredentialSpecAlternatives>
8 <CredentialSpecUID> urn:creds:id </CredentialSpecUID>
9 </CredentialSpecAlternatives>

10 <IssuerAlternatives>
11 <IssuerParametersUID> urn:utopia:id:issuer </IssuerParametersUID>
12 </IssuerAlternatives>
13 <DisclosedAttribute AttributeType= "urn:creds:id:state"/>
14 </Credential>
15 </PresentationPolicy>

The message to be signed is specified in the policy (Lines 2–4). In this case, it only includes a nonce
to prevent replay attacks, i.e. to ensure freshness of the presentation token. Note that, when making use
of the nonce, the presentation policy is not static anymore, but needs to be completed with a fresh nonce
element for every request. The Pseudonym element (Line 5) indicates that the presentation token must
contain a scope-exclusive pseudonym, with the scope string given by the XML attribute Scope. This
ensures that each user can create only a single pseudonym satisfying this policy, so that the registration
service can prevent the same user from obtaining multiple library cards.

The Credential element (Lines 6–14) imposes that an ID card issued by the republic of Utopia must
be presented (Lines 7-9 and 10–12) of which the state attribute must be revealed (Line 13). The XML
attribute Alias assigns the credential an alias so that it can be referred to from other places in the policy,
e.g., from the attribute predicates. The SameKeyBindingAs attribute of the Credential element (Line 6)
indicates that the identity card must be bound to the same key as the pseudonym in Line 5.

Library cards are key-bound credentials that contain only a single attribute, namely the applicant’s
identity card number. Their credential specification is given below.

1 <CredentialSpecification KeyBinding="true" Revocable="true">
2 <SpecificationUID> urn:utopia:lib </SpecificationUID>
3 <AttributeDescriptions MaxLength="256">
4 <AttributeDescription Type="urn:utopia:lib:idcardnr" DataType="xs:integer" Encoding="integer:unsigned">
5 <FriendlyAttributeName lang="EN"> ID Card Number </FriendlyAttributeName>
6 </AttributeDescription>
7 <AttributeDescription Type="urn:revocationhandle" DataType="xs:integer" Encoding="integer:unsigned" />
8 </AttributeDescriptions>
9 </CredentialSpecification>

A library card contains the applicant’s ID card number and must be bound to the same secret key as
the identity card. So the identity card must not only be presented, but also used as a source to carry over
the ID card number and the secret key to the library card. The library shouldn’t learn either of these
during the issuance process. Altogether, to issue library cards the state library creates an issuance policy
that contains the presentation policy above and the credential template that is described in detail below.

1 <IssuancePolicy>
2 <PresentationPolicy PolicyUID="libcard"> ... </PresentationPolicy>
3 <CredentialTemplate SameKeyBindingAs="id">
4 <CredentialSpecUID> urn:utopia:lib </CredentialSpecUID>
5 <IssuerParametersUID> urn:utopia:lib:issuer </IssuerParametersUID>
6 <UnknownAttributes>
7 <CarriedOverAttribute TargetAttributeType= "urn:utopia:lib:idcardnr">
8 <SourceCredentialInfo Alias="id" AttributeType="urn:creds:id:cardnr"/>
9 </CarriedOverAttribute>

10 </UnknownAttributes>
11 </CredentialTemplate>
12 </IssuancePolicy>

The credential template (Lines 3–11) first states the unique identifier of the credential specification and
issuer parameters of the newly issued credential (notice that here those are different than the identifiers of
the credential specification and issuer parameters of the credential that is presented). The optional XML
attribute SameKeyBindingAs further specifies that the new credential will be bound to the same secret
key as a credential or pseudonym in the presentation policy, in this case the identity card.

Page 119 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Within the UnknownAttributes element (Lines 6–10) it is specified which user attributes of the new cre-
dential will be carried over from existing credentials in the presentation token. The SourceCredentialInfo
element (Line 8) indicates the credential and the attribute of which the value will be carried over.

7.5 Presentation and Issuance Token

A presentation token consists of the presentation token description, containing the mechanism-agnostic
description of the revealed information, and the cryptographic evidence, containing opaque values from the
specific cryptography that “implements” the token description. The presentation token description roughly
uses the same syntax as a presentation policy. An issuance token is a special presentation token that
satisfies the stated presentation policy, but that contains additional cryptographic information required
by the credential template.

The main difference between the issuance token below and to the presentation and is-
suance policy above is that in the returned token the Pseudonym now also contains a
PseudonymValue (Line 6). Similarly, the DisclosedAttribute elements (Lines 10–12) in the token
now also contain the actual user attribute values. Finally, all data from the cryptographic implementation
of the presentation token and the advanced issuance features are grouped together in the CryptoEvidence
element (Line 17). This data includes, e.g., proof that the contained identity card is not revoked by the
issuer and that it is bound bound to the same secret key as the pseudonym.

1 <IssuanceToken>
2 <IssuanceTokenDescription>
3 <PresentationTokenDescription PolicyUID ="libcard" >
4 <Message> ... </Message>
5 <Pseudonym Alias="nym" Scope="urn:library:issuance" Exclusive="true" />
6 <PseudonymValue> MER2VXISHI=</PseudonymValue>
7 </Pseudonym>
8 <Credential Alias="id" SameKeyBindingAs="nym" >
9 ...

10 <DisclosedAttribute AttributeType="urn:creds:id:state" >
11 <AttributeValue> Nirvana </AttributeValue>
12 </DisclosedAttribute>
13 </Credential>
14 </PresentationTokenDescription>
15 <CredentialTemplate SameKeyBindingAs="id" > ... </CredentialTemplate>
16 </IssuanceTokenDescription>
17 <CryptoEvidence> ... </CryptoEvidence>
18 </IssuanceToken>

7.6 Presentation Policy with Extended Features

Recall that the state library has a privacy-friendly online interface for borrowing books, but that it
wants to identify readers who don’t properly return their books and potentially ban them for borrowing
more paper books. Also recall that the library has a special program for young readers. Altogether, for
borrowing books under the “young-reader”-conditions, users have to satisfy the following presentation
policy.

Page 120 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

1 <PresentationPolicyAlternatives>
2 <PresentationPolicy PolicyUID= "young−reader" >
3 <Message> ... </Message>
4 <Credential Alias="libcard" SameKeyBindingAs="id" >
5 <CredentialSpecAlternatives>
6 <CredentialSpecUID> urn:utopia:lib </CredentialSpecUID>
7 </CredentialSpecAlternatives>
8 <IssuerAlternatives>
9 <IssuerParametersUID> urn:utopia:lib:issuer </IssuerParametersUID>

10 </IssuerAlternatives>
11 <DisclosedAttribute AttributeType= "urn:utopia:lib:idcardnr" >
12 <InspectorAlternatives>
13 <InspectorParametersUID> urn:lib:arbitrator </InspectorParametersUID>
14 </InspectorAlternatives>
15 <InspectionGrounds> Late return or damage. </InspectionGrounds>
16 </DisclosedAttribute>
17 </Credential>
18 <Credential Alias="id" >
19 <CredentialSpecAlternatives>
20 <CredentialSpecUID> urn:creds:id </CredentialSpecUID>
21 </CredentialSpecAlternatives>
22 <IssuerAlternatives>
23 <IssuerParametersUID> urn:utopia:id:issuer </IssuerParametersUID>
24 </IssuerAlternatives>
25 </Credential>
26 <VerifierDrivenRevocation>
27 <RevocationParametersUID> urn:lib:blacklist </RevocationParametersUID>
28 <Attribute CredentialAlias ="libcard" AttributeType="urn:utopia:lib:idcardnr" />
29 </VerifierDrivenRevocation>
30 <AttributePredicate Function= "...:date−greater−than" >
31 <Attribute CredentialAlias ="id" AttributeType= "urn:creds:id:bdate" />
32 <ConstantValue> 1988−04−01 </ConstantValue>
33 </AttributePredicate>
34 </PresentationPolicy>
35 <PresentationPolicy PolicyUID= "regular−reader" >
36 <Message> ... </Message>
37 <Credential Alias="libcard" SameKeyBindingAs="id" >
38 <CredentialSpecAlternatives>
39 <CredentialSpecUID> urn:utopia:lib </CredentialSpecUID>
40 </CredentialSpecAlternatives>
41 <IssuerAlternatives>
42 <IssuerParametersUID> urn:utopia:lib:issuer </IssuerParametersUID>
43 </IssuerAlternatives>
44 <DisclosedAttribute AttributeType= "urn:utopia:lib:idcardnr" >
45 <InspectorAlternatives>
46 <InspectorParametersUID> urn:lib:arbitrator </InspectorParametersUID>
47 </InspectorAlternatives>
48 <InspectionGrounds> Late return or damage. </InspectionGrounds>
49 </DisclosedAttribute>
50 </Credential>
51 <VerifierDrivenRevocation>
52 <RevocationParametersUID> urn:lib:blacklist </RevocationParametersUID>
53 <Attribute CredentialAlias ="libcard" AttributeType="urn:utopia:lib:idcardnr" />
54 </VerifierDrivenRevocation>
55 </PresentationPolicy>
56 </PresentationPolicyAlternatives>

The above presentation policy contains two Credential elements (Lines 4–17, 18–25), one for the
library card and one for the identity card. The XML attribute SameKeyBindingAs (Line 4) of the library
credential referring to the identity card imposes that both credentials are underlain by the same secret
key. This prevents more senior readers from combining their library card with the identity card of a young
reader. No user attributes of the identity card have to be revealed, but the AttributePredicate element
(Lines 30–33) specifies that the date of birth must be after April 1st, 1988, i.e., that the reader is younger
than twenty-six.

To be able to nevertheless reveal the ID card number of an anonymous borrower and to im-
pose a fine when a book is returned late or damaged, the library makes use of inspection. The
DisclosedAttribute element (Lines 11–16) for the XML attribute "urn:utopia:lib:idcardnr" con-
tains InspectorParametersUID and InspectionGrounds child elements, indicating that the ID card
number should not be revealed in the clear to the verifier, but in a verifiably encrypted form to an
inspector. The former child element specifies the inspector’s public key under which the value must be
encrypted, in this case belonging to a designated arbiter within the library. The latter element specifies

Page 121 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

the circumstances under which the user attribute value may be revealed by the arbiter.
The library cards of customers who too often return borrowed books late or damaged must be excluded

from borrowing further paper books, but must still be usable for other purposes. In the preceding
example, this is taken care of by the VerifierDrivenRevocation element (Lines 26–29) that specifies
that the library card must be checked against the most recent revocation information from the revocation
authority urn:lib:blacklist. Revocation is performed based on the customer’s ID card number, as
indicated by the Attribute child element (Line 28). Revocation can also be based on a combination
of user attributes from a set of different credentials, in which case there will be multiple Attribute
child elements. The user then has to prove that a disjunctive combination of attribute values from each
VerifierDrivenRevocation element is not revoked with respect to RevocationParametersUID.

7.7 Interaction with the User Interface

1 <UiPresentationArguments>
2 <data>
3 <credentialSpecification id="urn:utopia:lib">...</credentialSpecification>
4 <credentialSpecification id="urn:creds:id">...</credentialSpecification>
5 <issuer id="urn:utopia:lib:issuer">...</issuer>
6 <issuer id="urn:utopia:id:issuer">...</issuer>
7 <inspector id="urn:lib:arbitrator">...</inspector>
8 <revocationAuthority id="urn:utopia:id:ra">...</revocationAuthority>
9 <credentialDescription id="urn:utopia:lib:74bddfb3−6886−43ac−83f8−ca3b72ad050d">...</credentialDescription>

10 <credentialDescription id="urn:creds:id:14f22b9d−06e0−4110−a8d9−b1a922462cd1">...</credentialDescription>
11 </data>
12 <tokenCandidatePerPolicy policyId="0">
13 <policy>...</policy>
14 <tokenCandidate candidateId="0">
15 <tokenDescription>...</tokenDescription>
16 <credential ref="urn:utopia:lib:74bddfb3−6886−43ac−83f8−ca3b72ad050d" />
17 <credential ref="urn:creds:id:14f22b9d−06e0−4110−a8d9−b1a922462cd1" />
18 <revealedFact>
19 <description lang="EN">You prove that urn:creds:id:bdate from credential urn:creds:id
20 is greater than 1988−04−01 (26 years ago).</description>
21 </revealedFact>
22 <revealedFact>
23 <description lang="EN">You prove that ‘ID Card Number’ from credential ‘Library Card’
24 is not revoked by the verifier urn:lib:blacklist.</description>
25 </revealedFact>
26 <revealedFact>
27 <description lang="EN">You prove that urn:creds:id is not revoked by urn:utopia:id:ra.</description>
28 </revealedFact>
29 <inspectableAttribute>
30 <credential ref="urn:utopia:lib:74bddfb3−6886−43ac−83f8−ca3b72ad050d" />
31 <attributeType>urn:utopia:lib:idcardnr</attributeType>
32 <inspectionGrounds>Late return or damage.</inspectionGrounds>
33 <inspectorAlternative ref="urn:lib:arbitrator" />
34 </inspectableAttribute>
35 </tokenCandidate>
36 </tokenCandidatePerPolicy>
37 <tokenCandidatePerPolicy policyId="1">...</tokenCandidatePerPolicy>
38 </UiPresentationArguments>

1 <UiPresentationReturn>
2 <chosenPolicy>0</chosenPolicy>
3 <chosenPresentationToken>0</chosenPresentationToken>
4 <chosenInspectors>urn:lib:arbitrator</chosenInspectors>
5 </UiPresentationReturn>

During a presentation, the user can potentially satisfy the presentation policy alternatives in many
ways. In order to allow the user to choose which presentation policy he wishes to satisfy, to choose how to
satisfy the chosen policy (e.g., if he has multiple credentials of one type), and to check what he reveals
by doing so, the Privacy-ABC framework generates a UiPresentationArguments object and hands it
over to the application, which in turn will probably want to forward it to some sort of user interface.
The framework then expects an object of type UiPresentationReturn with the user’s choice. There are
similar objects UiIssuanceArguments and UiIssuanceReturn for issuance.

The UiPresentationArguments object is designed to minimize the complexity of the user interface:
(1) it contains enough information so that the application does not have to query additional data from

Page 122 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

the Privacy-ABC framework, and (2) it contains some redundant information so that it does not need
to do complex parsing of the policy to figure out what exactly is being revealed. It consists of two
parts, as illustrated above: the first part is a data element, which lists all parameters and similar objects
that are referred to in the second part: a list of all credential specifications (Lines 3–4), summaries
of all issuer parameters (Lines 5–6), summaries of all inspector parameters (Line 7), summaries of the
issuer-driven revocation authorities (Line 8), and credential descriptions (Lines 9–10), and pseudonym
descriptions (shown in Line 4 of the issuance example below). The second part consists of a list of
tokenCandidatePerPolicy elements, which in turn comprise a presentation policy (Line 13) and a list of
tokenCandidate showing all possible alternatives to satisfy the policy. The latter consists of a partially
filled out presentation token description (Line 15); the list of credentials that will be presented (Lines 16–
17); all possible alternative lists of pseudonyms that are compatible with the presented credentials and
that satisfy the policy (not shown in this example, but see Lines 9–11 of the issuance example below);
a list of facts that will be revealed as part of the presentation (Lines 18–28), such as equality between
attributes, predicates over the attributes, revocation checks—the friendly names of credentials, attributes,
and parameters are used whenever available; the list of attributes that are revealed (not shown in this
example), including attributes that are proven to be equal to a revealed attribute; and the list of inspectable
attributes (Lines 29–34) with a choice of possible inspectors (Line 33). The Privacy-ABC framework will
tentatively create new pseudonyms each time and include those in the list; these pseudonyms are then
only saved if the user actually selects them for inclusion in the presentation token.

The UiPresentationReturn object indicates which policy (Line 2), which presentation token within
that policy (Line 3), and which inspector for each of the inspectable attributes (Line 4) the user chose. The
issuance example below illustrates that also part of the UiPresentationReturn is the list of pseudonyms
the user wishes to chose, and whether the user wishes to change the metadata of any of the stored
pseudonyms.

1 <UiIssuanceArguments>
2 <data>
3 ...
4 <pseudonym id="nym:urn:library:issuance:965999d1−25e9−49e5−8db6−ad8ae9705807">...</pseudonym>
5 ...
6 </data>
7 <tokenCandidate candidateId="0">
8 ...
9 <pseudonymCandidate candidateId="0">

10 <pseudonym ref="nym:urn:library:issuance:965999d1−25e9−49e5−8db6−ad8ae9705807" />
11 </pseudonymCandidate>
12 ...
13 </tokenCandidate>
14 <issuancePolicy>...</issuancePolicy>
15 </UiIssuanceArguments>

1 <UiIssuanceReturn>
2 <chosenIssuanceToken>0</chosenIssuanceToken>
3 <chosenPseudonymList>0</chosenPseudonymList>
4 <metadataToChange>
5 <entry>
6 <key>nym:urn:library:issuance:965999d1−25e9−49e5−8db6−ad8ae9705807</key>
7 <value>I used this to obtain my library card.</value>
8 </entry>
9 </metadataToChange>

10 </UiIssuanceReturn>

The UiIssuanceArguments object is similar to the UiPresentationArguments element. Since there
is only one issuance policy per issuance transaction, we removed the tokenCandidatePerPolicy element;
instead the tokenCandidate elements (Line 7) and issuancePolicy element (Line 14) are direct children
of the root element.

The UiIssuanceReturn object is similar to the UiPresentationReturn object. It indicates which
presentation token within the policy (Line 2), which inspectors (not shown in this example), and which list
of pseudonyms (Line 3) were chosen. In this example, the user has also chosen to associate new metadata
to the pseudonym (Lines 4–9).

Page 123 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

8 Trust Relationships in the Ecosystem of Privacy-ABCs

Several incidents in the past have demonstrated the existence of possible harm that can arise from misuse
of people’s personal information such as blackmailing, impersonation, and so on. Giving credible and
provable reassurances to people is required to build trust and make people feel secure to use the electronic
services offered by companies or governments on-line. Indeed the use of Privacy-ABCs can help mitigate
many serious threats to user’s privacy. However, some risks still remain, which are not addressed by
Privacy-ABCs, requiring some degree of trust between the involved entities.

In this section, we focus on identifying the trust relationships between the involved entities in the
ecosystem of Privacy-ABCs and provide a concrete answer to “who needs to trust whom on what? ”.

8.1 Definition of Trust

What do we mean by “trust”? A wide variety of definitions of trust exist in the bibliography [Har04][O’H04].
A comprehensive study of the concept has been presented in the work by McKnight and Chervany [MC96],
where the authors provide a classification system for different aspects of trust. In their work, they define
trust intention as “the extent to which one party is willing to depend on the other party in a given situation
with a feeling of relative security, even though negative consequences are possible.” [MC96]

Their definition embodies (a) the prospect of negative consequences in case the trusted party does
not behave as expected, (b) the dependence on the trusted party, (c) the feeling of security, and the (d)
situation-specific nature of trust. So, trust intention shows the willingness to trust a given party in a
given context, and implies that the trusting entity has made a decision about the various risks of allowing
this trust.

8.2 Related Work

Some work already exists in trust relationships in identity management systems. For example, Jøsang et
al. [JP04] analyse some of the trust requirements in several existing identity management models. They
consider the federated identity management model, as well as the isolated or the centralized identity
management model and they focus on the trust requirements of the users into the service and identity
providers, but also between the identity providers and service providers.

Delessy et al. [DFLP07] define the Circle of Trust pattern, which represents a federation of service
providers that share trust relationships. The focus of their work however lies more on the architectural and
behavioural aspects, rather than on the trust requirements which must be met to establish a relationship
between two entities.

Later, Kylau et al. [KTMM09] concentrated explicitly on the federated identity management model
and identify possible trust patterns and the associated trust requirements based on a risk analysis. The
authors extend their scenarios by considering also scenarios with multiple federations.

It seems that there is no work that discusses systematically the trust relationships in identity manage-
ment systems that incorporate Privacy-ABCs. However, some steps have been done towards systematic
threat analysis in such schemes, by the establishments of a quantitative threat modelling methodology
that can be used to identify privacy-related risks on Privacy-ABC systems [LSK12].

8.3 Trust Relationships

To provide a comprehensible overview of the trust relationships, we describe the trust requirements
from each entity’s perspective. Therefore, whoever likes to realise one of the roles in the ecosystem of
Privacy-ABCs could easily refer to that entity and learn about the necessary trust relationships that
need to be established. Figure 19 depicts an overview of the identified trust relationships between the
involved parties, which we will describe in the next sections. On the bottom of Figure 19, the general
trust requirements by all the parties are demonstrated.

Page 124 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

T3: Trust in the setup and initialization phase

T2: Trust in the integrity of the implementation

T1: Trust in the correctness of the crypto and theory

T14

T15

T18

T17

T19

Figure 19: Visualization of the trust relationships

8.3.1 Assumptions

Before delving into the trust relationships, it is important to elaborate on the assumptions that are required
for Privacy-ABCs to work. Privacy-ABCs are not effective in case of tracking and profiling methods that
work based on network level identifiers such as IP addresses or the ones in the lower levels. Therefore, in
order to benefit from the full set of features offered by Privacy-ABCs, the underlying infrastructure must
be privacy-friendly as well. If it is ensured that no additional information is being collected by the service
providers, users employ Privay-ABCs without any concern. Otherwise, the recommendation for the users
would be to employ network anonymizer tools to cope with this issue.

Another important assumption concerns the verifiers’ enthusiasm for collecting data. Theoretically,
greedy verifiers have the chance to demand for any kind of information they are interested in and avoid
offering the service if the user is not willing to disclose these information. Therefore, the assumption is
that the verifiers reduce the amount of requested information to the minimum level possible either due to
regulations or any other motivation such as not having to invest in technology to protect the data.

8.3.2 Trust by all the parties

Independent from their roles, all the involved parties need to consider a set of fundamental trust assumptions
that relates to design, implementation and setup of the underlying technologies. The most fundamental
trust assumption by all the involved parties concerns the theory behind the actual technologies utilized
underneath. Everybody needs to accept that in case of a proper implementation and deployment, the
cryptographic protocols will offer the functionalities and the features that they claim. However, this
trust relationship can be relaxed by making the security proofs publicly available so that different expert
communities can verify them and vouch for their correctness.

Page 125 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

T1. All the involved parties need to put trust in the correctness of the underlying cryptographic protocols.

Even a protocol that is formally proven to be privacy preserving does not operate appropriately
when the implementation is flawed. Consequently, the realization of the corresponding cryptographic
protocol and the related components must be trustworthy. For example, the Users need to trust the
implementation of the so-called UserAgent and the smart card application meaning that they must rely
on the assertion that the provided hardware and software components do not misbehave in any way
and under any circumstances, which might jeopardise the User’s privacy. It is worth noting that there
are mechanisms such as formal verification and code inspection which can boost the users’ trust in the
implementations.

T2. All the involved parties need to put trust in the trustworthiness of the implemented platform and the
integrity of the defined operations on each party.

A correct implementation of privacy preserving technologies cannot be trustworthy when the initializa-
tion phase has been compromised. For example, some cryptographic parameters need to be generated in a
certain way in order to guaranty the privacy preserving features of a given technology. A diversion in the
initialization process might introduce vulnerabilities to the future operation of the users. Nevertheless, it is
possible to provide some information to the public so that the experts can check whether the initialization
is done properly.

T3. All the involved parties need to put trust in the trustworthiness of the system setup and the initialization
process.

8.3.3 Users’ Perspective

In typical scenarios, verifiers grant access to some services based on the credentials that the users hold. A
malicious issuer can trouble a user and cause denial of service by not providing credible credentials in
time or deliberately embedding invalid information in the credentials. For example, in case of a discount
voucher scenario, the issuer of the vouchers can block some specific group of users with fake technical
failures of the issuance service until the offer is not valid anymore.

T4. The users need to put trust in the issuers delivering accurate and correct credentials in a timely
manner.

When designing a credential, the issuer must take care that the structure of the attributes and the
credential will not impair the principle of minimal disclosure. For example, embracing name and birth
date in another attribute such as registration id is not an appropriate decision since presenting the latter
to any verifier results in undesirable disclosure of data. In this regard, making the credential specifications
public enables the independent auditors to review them and therefore reduce the concerns of the users
who might not have the knowledge to evaluate the credentials on their own.

T5. The users need to trust that the issuers design the credentials in an appropriate manner, so that the
credential content does not introduce any privacy risk itself.

Similar to any other electronic certification system, dishonest issuers have the possibility to block a
user from accessing a service without any legitimate reason by revoking her credentials. Therefore the
users have to trust that the issuer has no interest in disrupting users activities and will not take any
action in this regard as long as the terms of agreement are respected.

T6. The users need to trust that the issuers do not take any action to block the use of credentials as long
as the user complies with the agreements.

It is conceivable that a user loses control over her credentials and therefore contacts the issuer requesting
for revocation of those credentials. If the issuer delays processing the user’s request the lost or stolen
credentials can be misused to harm the owner.

Page 126 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

T7. The users need to trust that the issuers will promptly react and inform the revocation authorities
when the users claim losing control over their credentials.

One of the possible authentication levels using Privacy-ABCs is based on a so-called scope-exclusive
pseudonym where the verifier is able to impact the generation of pseudonyms by the users and limit the
number of partial identities that a user can obtain in a specific context. For example, in case of an on-line
course evaluation system, the students should not be able to appear under different identities and submit
multiple feedbacks even though they are accessing the system pseudonymously. In this case, the verifier
imposes a specific scope to the pseudonym generation process so that every time a user tries to access the
system, it has no choice other than showing up with the same pseudonym as the previous time in this
context. In this situation, a dishonest verifier can try to unveil the identity of a user in a pseudonymous
context or correlate actives by imposing the “same” scope identifier in generation of pseudonyms in another
context where the users are known to the system. However, similar to some other trust relationships,
independent auditors could attest these policies when they are publicly available.

T8. The users need to trust that the verifiers do not misbehave in defining policies in order to cross-link
different domains of activities.

If a revocation process exists in the deployment model, the user needs to trust the correct and reliable
performance of the revocation authority. Delivering illegitimate information or hindrance to provide
genuine data can disrupt granting user access to her desired services.

T9. The users need to trust that the revocation authorities perform honestly and do not take any step
towards blocking a user without legitimate grounds.

Depending on the revocation mechanism setting, the user might need to show up with her identifier to
the revocation authority in order to obtain the non-revocation evidence of her credentials for an upcoming
transaction. If the revocation authority and the verifier collude, they might try to correlate the access
timestamps and therefore discover the identity of the user who requested a service. A possible way to
reduce this risk would be to regularly update the non-revocation evidence independent of their use of
credentials.

T10. The users need to trust that the revocation authorities do not take any step towards collusion with
the verifiers in order to profile the users.

Embedding encrypted identifying information within an authentication token for inspection purposes
makes the users dependent of the trustworthiness of the inspector. As soon as the token is submitted to
the verifier, the inspector is able to lift the anonymity of the user and disclose her identity. Therefore
the role of inspector must be taken by an entity that a user has established trust relationship with.
Nevertheless, there exist techniques that could help to avoid putting trust on a single entity but a group
of inspectors. In this case, a minimum number of inspectors need to collaborate in order to retrieve the
identity information from the presentation token.

T11. The users need to trust that the inspectors do not disclose their identities without making sure that
the inspection grounds hold.

8.3.4 Verifiers’ Perspective

Provisioning of the users in the ecosystem is one of the major points where the verifiers have to trust the
issuers to precisely check upon the attributes that they are attesting. The verifiers rely on the information
that is certified by the issuers for the authentication phase so the issuers assumed to be trustful.

T12. The verifiers need to trust that the issuers are diligent and meticulous when evaluating and attesting
the users’ attributes.

When a user loses her credibility, it is the issuer’s responsibility to take the appropriate action in
order to block the further use of the respective credentials. Therefore, the verifiers rely on the issuers to
immediately request revocation of the user’s credentials when a user is not entitled anymore.

Page 127 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

T13. The verifiers need to trust that the issuers will promptly react to inform the revocation authorities
when a credential loses its validity.

In an authentication scenario where inspection is enabled, the only party who is able to identify a
misbehaving user is the inspector. The verifier is not able to deal with the case if the inspector does not
to cooperate. Therefore, similar to trust relationship T11 by the users, the verifiers dependent of the
fairness and honesty of the inspector. Moreover, in a similar fashion, the trust can be distributed to more
than one inspector to reduce the risk of misbehaviour. In this case, a subset of all the inspectors would
enough to proceed with the inspection.

T14. The verifiers need to trust that the inspectors fulfil their commitments and will investigate the
reported cases fairly and deliver the identifiable information in case of verified circumstances.

The validity of credentials without expiration information is checked through the information that the
verifier acquires from the revocation authority. A compromised revocation authority can deliver outdated
or illegitimate information to enable a user to get access to resources even with revoked credentials.
Therefore the revocation authority needs to be a trusted entity from the verifiers’ perspective.

T15. The verifiers need to trust that the revocation authorities perform honestly and deliver the latest
genuine information to the verifiers.

Often user credentials are designed for individual use, and sharing is not allowed. Even though security
measures such as hardware tokens can be employed to support this policy limit the usage of the credentials
to the owners, the users can still share the tokens and let others benefit from services that they are not
normally eligible for. The verifiers have no choice than trusting the users and the infrastructure on this
matter.

T16. The verifiers need to trust that the users do not share their credentials with the others, if this would
be against the policy.

8.3.5 Issuers’ Perspective

As mentioned earlier T13, the issuer is responsible to take the appropriate steps to block further use
of a credential when it loses its validity. The issuer has to initiate the revocation process with the
revocation authority and trust that the revocation authority promptly reacts to it in order to disseminate
the revocation status of the credential. For instance, when a user cancels her subscription for an online
magazine, the publisher would like to stop her access to the service right after the termination of the
contract. A compromised revocation authority can delay or ignore this process to let the user benefit
from existing services.

T17. The Issuers need to trust that the revocation authorities perform honestly and react to the revocation
requests promptly and without any delay.

8.3.6 Inspectors’ Perspective

In order to have a fair inspection process, the inspection grounds must be precisely and clearly communi-
cated to the users in advance. It can be said that presenting inspection grounds is as challenging as privacy
policies where long, ambiguous and tedious texts would cause typical users to overlook or misunderstand
the conditions. Therefore, in case of an inspection request, the inspector has to rely on the verifier that
the users had been informed about these conditions properly.

T18. The Inspector need to trust that the verifier has properly informed the users about the actual
circumstances that entitle the verifier for de-anonymisation of the users.

Page 128 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

8.3.7 Revocation Authorities’ Perspective

Revocation authorities are in charge of delivering up-to-date information about the credentials’ revocation
status to the users and the verifiers. However, they are not in a position to decide whether a credential
must be revoked or not, without receiving revocation requests from the issuers. Therefore, their correct
operations depends on the diligent performance of the issuers.

T19. In order to provide reliable service, the revocation authorities need to trust that the issuers deliver
legitimate and timely notice of the credentials to be revoked.

Page 129 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

9 Applicability to existing Identity Infrastructures

Many identity protocols and frameworks are in use today, and new ones are being developed by the
industry, each addressing specific use cases and deployment environments. Privacy concerns exist in many
scenarios targeted by these systems, and therefore it is useful to understand how they could benefit from
Privacy-ABC technologies to improve their security, privacy, and scalability.

We consider the following popular systems: WS-*, SAML, OpenID, OAuth, and X.509.5 A short
description of each system is given to facilitate the discussion, but is by no means complete; the reader is
referred to the appropriate documentation to learn more about a particular system. Moreover, we mostly
describe “how” integration can be done, rather than discussing “why” as this is highly application-specific.

The last section describes the common challenges of these federated systems, and how Privacy-ABC
technologies can help to alleviate them.

9.1 WS-*

The set of WS-* specifications define various protocols for web services and applications. Many of
these relate to security, and in particular, to authentication and attribute-based access (such as WS-
Trust [WST09], WS-Federation [WSF09], and WS-SecurityPolicy [WSS07]). These specifications can be
combined to implement various systems with different characteristics.

Figure 20: WS-Trust protocol flow

The WS-Trust specification is the main building block that defines how security tokens can be obtained
5Other popular frameworks, such as Facebook Login [Fac], OpenID Connect [Ope], and Fido Alliance [Fid] are similar

or built on top of the schemes presented here, and will therefore be omitted in the discussion.

Page 130 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

and presented by users. The specification does not make any assumption on the type of tokens exchanged,
and provides several extensibility points and protocol flow patterns suitable for Privacy-ABC technologies.

In WS-Trust, a requestor (user) requests a security token from the Identity Provider’s Security Token
Service (the issuer) encoding various certified claims (attributes), and presents it (either immediately or
at a later time) to a Relying Party (the verifier); see Figure 20.

Integrating Privacy-ABC technologies in WS-Trust is straightforward due to the extensible nature
of the WS-* framework. The issuance protocol is initiated by the requestor by sending, as usual, a
RequestForSecurityToken message to the STS. The requestor and the STS then exchange as many
RequestForSecurityTokenResponse messages as needed by the ABC issuance protocol (using the
challenge-response pattern defined in Section 8 of [WST09]). The STS concludes the protocol by sending
a RequestForSecurityTokenResponseCollection message. Typically, this final message contains a
collection of requested security tokens. Due to the nature of the Privacy-ABC technologies, the STS
does not send the security tokens per se, but the requestor is able to compute its credential(s) using the
exchanged cryptographic data. See Figure 21.

The issuance messages are tied together using a unique context, but otherwise do not specify the
content and formatting of their contents. It is therefore possible to directly use the protocol artefacts
defined in Section 5.

Figure 21: WS-Trust issuance protocol

Presenting an ABC to a Relying Party is also straightforward. The exact mechanism to use depends
on the application environment. For example, in a federated architecture using WS-Federation, the
presentation token could be included in a RequestForSecurity TokenResponsemessage part of a wresult
HTTP parameter. Given the support of extensible policy (using, e.g., WS-SecurityPolicy), the ABC verifier
policy could be expressed by the Relying Party and obtained by the client; e.g., it could be embedded
in a service’s federation metadata (see Section 3 of [WSF09]). Privacy-ABC technology integration into

Page 131 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

WS-Trust has been successfully demonstrated; see, e.g., [UPW11].

9.2 SAML

The Security Assertion Markup Language (SAML) is a popular set of specifications for exchanging certified
assertions in federated environments. Different profiles exist addressing various use cases, but the core
specification [SAM05] defines the main elements: the SAML assertion (a XML token type that can encode
arbitrary attributes), and the SAML protocols for federated exchanges.

Typically, a User Agent (a.k.a. requester or client) requests access to a resource from a Relying Party
(a.k.a. Service Provider) which in turn requests a SAML assertion from a trusted Identity Provider (a.k.a.
SAML Authority). The User Agent is redirected to the Identity Provider to retrieve the SAML assertion
(after authenticating to the Identity Provider in an unspecified manner) before passing it back to the
Relying Party. Figure 22 illustrates the protocol flow.

Figure 22: SAML protocol flow

Contrary to WS-*, the SAML protocols only permit the use of the SAML assertion token type.
Therefore, one needs to profile the SAML assertion in order to use the Privacy-ABC technologies with
the SAML protocols. The SAML assertion schema defines an optional ds:Signature element used
by the Identity Provider to certify the contents of the assertion. If used, it must be a valid XML
Signature [BBF+02]. This means that XML Signature must also be profiled to support ABC issuer
signatures.6 The alternative would be to protect the SAML assertion using a custom external signature
element.

6This could be achieved by applying the appropriate XML transforms on the assertions contents before interpreting
them as input to the ABC protocols.

Page 132 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

ABC-based SAML assertions could be used in the SAML protocols in various ways. One example
would be for the client to create a modified SAML assertion using a Privacy-ABC in response to a
Relying Party’s authentication request rather than fetching it in real-time from the Identity Provider
(replacing steps 3 and 4 in Figure 22). The assertion would contain the disclosed attributes, and encode
the presentation token’s cryptographic data in the SAML signature. Essentially, the SAML assertion
would be an alternative token type to the ABC presentation token.

Additionally, the Identity Provider could issue an on-demand Privacy-ABC using the SAML protocol;
this might require multiple roundtrips to accommodate the potentially interactive issuance protocol. Then
the SAML assertion presented to the Relying Party would need to be created as explained above.

9.3 OpenID

OpenID is a federated protocol allowing users to present an identifier7 to Relying Parties by first
authenticating to an OpenID Provider. The current specification, OpenID 2.0 [Ope07], specifies the
protocol. Assuming that the user has an existing OpenID identifier registered with an OpenID Provider,
we illustrate the steps in Figure 23:

Figure 23: OpenID protocol flow

We assume that the user has an existing OpenID identifier registered with an OpenID Provider.

1. To login to a Relying Party, the user presents her (unverified) OpenID identifier.

2. The Relying Party parses the identifier to discover the User’s OpenID Provider and redirects the
User Agent to it.

7The specification describe this as a URL or XRI (eXtensible Resource Identifier), but extensions used by popular
deployments use email addresses.

Page 133 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

3. The user authenticates to the OpenID Provider; how this is achieved is out-of-scope of the OpenID
specification (popular existing web deployments use usernames and passwords).

4. Upon successful authentication, the OpenID Provider redirects the User Agent to the Relying Party
with a signed successful authentication message.

5. The Relying Party validates the authentication message using either a shared secret with the OpenID
Provider or alternatively, by contacting the OpenID Provider directly.

OpenID follows a standard federated single sign-on model and therefore inherits the security and
privacy problems of such systems. The OpenID specification describes in Section 15 some countermeasures
against common concerns, but nonetheless, the systems remains vulnerable to active attackers, especially
to attacks originating from protocol participants (see, e.g., [Bra] for a summary of the issues).

Privacy-ABC technologies could be used to increase both the security and privacy of the protocol,
and reduce the amount of trust needed on OpenID Providers. For example, certified or scope-exclusive
pseudonyms derived from an ABC issued by an OpenID Provider could be used as local Relying Party
identifiers, therefore providing unlinkability between the User’s spheres of activities at different Relying
Parties (using the Relying Partie’s URL as a scope string). The cryptographic data in the corresponding
ABC presentation token would need to be encoded in extension parameters defined in an ABC profile.
A similar integration has been demonstrated in the PseudoID prototype [DW10], using Chaum’s blind
signatures [Cha83].

OpenID may also be used in attribute-based access scenarios. The OpenID Attribute Exchange [HBH07]
extension describes how Relying Party can request attributes of any type from the OpenID Provider by
adding fetch parameters in the OpenID authentication message, and how an OpenID Provider can return
the requested attributes in the response. OpenID Connect [Ope] is a new scheme built on top of OAuth
(see following section) that also addresses attribute exchange.

To generate an ABC-based response, the User Agent would create the OpenID response on behalf of
the OpenID Provider using the contents of a presentation token, properly encoding the disclosed attributes
using the OpenID Attribute Exchange formatting and by encoding the cryptographic evidence in custom
attributes.

9.4 OAuth

OAuth is an authorization protocol that enables applications and devices to access HTTP8 services on
behalf of users using delegated tokens rather than the users’ main credentials. The current specification,
OAuth 2.0 [Har12], is being developed by the IETF OAuth working group.9 OAuth specifies four roles.
Quoting from the spec:

resource owner: an entity capable of granting access to a protected resource (e.g. end-user).

resource server: the server hosting the protected resources, capable of accepting responding to resource
requests using access tokens.

client: an application making protected resource requests on behalf of the owner and with its authorization.

authorization server: the server issuing access tokens to the client after successfully authenticating the
resource owner and obtaining authorization.

An example scenario is as follows: an end-user (resource owner) can grant a printing service (client)
access to her protected photos stored at a photo sharing service (resource server), without sharing her
username and password with the printing service. Instead, she authenticates directly with a server trusted
by the photo sharing service (authorization server) which issues the service delegation-specific credentials
(access token).

A typical OAuth interaction is illustrated in Figure 24 :
8Using a transport protocol other than HTTP is undefined by the specification.
9OAuth 2.0 evolved from the OAuth WRAP [HTEG10] profile which has been deprecated.

Page 134 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Figure 24: OAuth 2.0 protocol flow

a. The client requests authorization from the resource owner. The authorization request can be made
directly to the resource owner (as shown), or preferably indirectly via the authorization server as an
intermediary.

b. The client receives an authorization grant which is a credential representing the resource owner’s
authorization, expressed using one of four grant types defined in this specification or using an
extension grant type. The authorization grant type depends on the method used by the client to
request authorization and the types supported by the authorization server.

c. The client requests an access token by authenticating with the authorization server and presenting the
authorization grant.

d. The authorization server authenticates the client and validates the authorization grant, and if valid
issues an access token.

e. The client requests the protected resource from the resource server and authenticates by presenting the
access token.

f. The resource server validates the access token, and if valid, serves the request.

As we can see, two types of credentials are used in the protocol flow: the authorization grant and the
access token. A Privacy-ABC could be used for either one, as we will describe in the following sections.10
The OAuth protocol flow does not allow presenting a dynamic policy to the client; if this functionality
is needed, the policy would need to be obtained and processed at the application layer; otherwise, the
application may use an implicit policy that drives the client’s behaviour.

9.4.1 Authorization grant

The first step in the OAuth flow is for the client to request authorization from the resource owner and
getting back an authorization grant. The OAuth specification defines four grant types (authorization
code, implicit, resource owner password credentials, and client credentials) and provides an extension
mechanism for defining new ones.

10The OAuth specification does not describe how the resource owner authenticates the client before issuing the autho-
rization grant. Conceptually, this could also be done using an ABC.

Page 135 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Although one could use the authorization code or the client credential grant types, the extension
mechanism is better-suited to integrate ABC-based grants. How the Privacy-ABC is obtained by the
client is out-of-scope of the OAuth flow. To present the Privacy-ABC to the authorization server, one
could define a profile similar to the SAML assertion one [MCM14]. For example, the client could send the
following access token request to the authorization server:
POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded;charset=UTF-8
grant_type=http://abc4trust.eu/oauth&abctoken=PEFzc2VGlv...

where the abctoken parameter would contain an encoding of a presentation token (e.g., using a base64
encoding of the XML representation). As mentioned above, the policy driving the client’s presentation
behaviour would be dealt with at the application level (and might be fixed for an application).

9.4.2 Access token

An access token is issued by the authorization server to the client and later presented to the resource server.
The format and contents of the access token is not defined in the OAuth specification, and therefore one
could define a way to use a Privacy-ABC to create an access token. This can be done by defining a new
access token type (as explained in Section 8.1 of [Har12]), or by encoding the presentation token content
into an existing extensible token type, such as the JSON Web Token [JWT].11

Since access tokens are typically long-lived, the issuance of the Privacy-ABC can be done out-of-band
of the OAuth protocol. It can also be done directly by the authorization server by embedding the issuance
protocol messages in multiple access token request-response runs (in which case the returned “access
tokens” would be the opaque issuance messages). When this process concludes, the client would be able
to create a valid ABC-based access token.

To present the ABC access token, client computes a valid presentation token using an application-
specific resource policy (obtained out-of-band or implicitly defined), encodes it in the right access token
format, and includes it in the OAuth protected resources access request.

9.5 X.509 PKI

Most of the schemes presented in this section require online interactions with an Issuer to present attributes
to a Relying Party. This provides flexibility about what can be disclosed to the Relying Party, but impacts
the privacy vis-à-vis the Issuer (which typically learns where the attributes are presented). A Public
Key Infrastructure (PKI) uses a different approach: PKI certificates encoding arbitrary attributes and
issued to users are typically long-lived. The decoupling of the issuance and presentation protocols provides
some privacy benefits to the user, but removes the minimal disclosure aspect. Indeed, a Verifier will learn
everything that is encoded in a certificate even if a subset of the information would have been sufficient to
make its access decision. The integration of Privacy-ABC technology is therefore desirable to provide
these privacy benefits while offering the same security level as in PKI.

X.509 [X50] is a popular PKI standard12 that defines two types of credentials: public key and attribute
certificates. A public key certificate contains a user public key associated to a secret private key, and
other metadata (serial number, a validity period, a subject name, etc.) The certificate is signed by a
Certificate Authority. An attribute certificate, also signed by the CA, is tied to a public-key certificate
and can contain arbitrary attributes. Both types of certificates can also contain arbitrary extensions.

11The JSON Web Token format contains a set of attribute name and value pairs and corresponding metadata (includ-
ing a digital signature identified by an algorithm identifier). This is supported by ABC technologies, but does not allow
the representation of the most advanced features. JWT extensions, such as the Proof-Of-Possession Semantics for JSON
Web Tokens [JBT], might help to enable all the ABC features.

12Other PKI systems exist, such as PGP [CDF+]. We will not consider them in this document, but ABC integration
would look similar.

Page 136 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

The X.509 protocol flow is as follows. The client starts by generating a key pair, and sends a certificate
request that includes the generated public key to the Certificate Authority. The Certificate Authority
creates, signs and returns the X.509 certificate to the client which stores it along with the associated
private key. To authenticate to a Relying Party, the client later uses the certificate’s private key to sign
a Relying Party-specified challenge (either a random number or an application-specific message). The
Relying Party verifies the signature and validates the certificate. This involves verifying the certificate’s
Certificate Authority signature, making sure that the Certificate Authority is a trusted issuer (is or is
linked to a trusted root), and making sure that the certificate has not expired and is not revoked. Checking
for non-revocation can be done by either checking that the certificate’s serial number does not appear
on a Certificate Revocation List (CRL), or by querying an Online Certificate Status Protocol (OCSP)
responder.13 See Figure 25.

Figure 25: X.509 protocol flow

Integrating Privacy-ABCs with X.509 certificates is possible and provides two immediate benefits:

• Long-lived certificates support minimal disclosure (only the relevant properties of encoded attributes
are disclosed to the Relying Party rather than the full set of attributes), and

• The user’s public key and the Certificate Authority signatures on the certificates are unlinkable (the
Certificate Authority and the Relying Parties cannot track and trace the usage of the certificate
based solely on these cryptographic values).

Two integration approaches are considered next. The first one consists of encoding the ABC artefacts’
contents in X.509 artefacts using ABC-specific algorithm identifiers and extensions (i.e., the client would
generate an X.509 certificate encoding the Privacy-ABC’s contents at the end of the issuance protocol).
Since the presentation protocol of an X.509 certificate is not specified, the presentation token artefact
could be used almost as is, but including the modified X.509 certificate.

13The mechanism and endpoint to be used are specified by the CA and encoded into the certificate.

Page 137 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

The second and preferred14 approach would be to transform an existing X.509 certificate into a
Privacy-ABC that can be presented to various Relying Parties. The following example illustrates the
concept: The protocol flow would be as follows:

1. The client visits the ABC issuer and presents her X.509 certificate.

2. After validating the certificate and its ownership by the User, the ABC Issuer issues a Privacy-ABC
encoding the certificate’s information into attributes:

(a) The certificate’s expiration date is encoded in an attribute.

(b) The certificate’s serial number is encoded as the revocation handle.

(c) The revocation information (e.g., the CRL endpoint)15 is encoded in an attribute.

(d) The Certificate Authority identifier is encoded in an attribute.

(e) The other certificate fields might also be encoded in the Privacy-ABC if they need to be
presented to Relying Parties.

3. The client later presents the ABC to the Verifier, disclosing the following information:

(a) Disclose the Certificate Authority identifier16 and revocation information attributes.

(b) Prove that the underlying certificate is not expired by proving that the undisclosed expiration
date is not before the current time.

(c) Prove that the serial number does not appear on the current CRL (this can be achieved using
repetitive negation proofs on the CRL elements).17

4. The Verifier would perform these validation steps (on top of the normal ABC validation):

(a) Verify that the Certificate Authority is from a trusted set of issuers.

(b) Retrieve the current CRL (using the disclosed revocation information) and verify the non-
revocation proof.

(c) Verify the non-expiration proof.

After these steps, the Verifier is convinced that the user possesses a valid (i.e., non-expired, non-revoked)
X.509 certificate from a trusted Certificate Authority.

9.6 Integration summary

The systems presented above follow a similar federated pattern of a Relying Party requesting, through the
user, login or attribute information from a trusted Identity Provider. In PKI and OAuth the certified
information (certificate and access token, respectively) are typically obtained in advance and reused over
time, while in the other systems, the information is retrieved on-demand from the Identity Provider.

These architectures have some security, privacy, and scalability challenges that might be problematic
in some scenarios:

• The Identity Provider can often access the Relying Party using a user’s identity without the user’s
knowledge. This is trivial in systems where the Identity Provider creates the pseudonym (like in
SAML, OpenID, OAuth, WS-Federation). In systems where a user secret is employed (like in PKI,

14We claim that this approach is preferred because of the broad existing code base implementing X.509. It would be
easier to develop an conversion module on top of existing X.509 components.

15This example uses a CRL as the revocation mechanism. Using OCSP would also be possible by having the client
prove to the OCSP responder directly that the ABC is not revoked, and presenting a freshly issued “receipt” to the
Relying Party.

16Alternatively, the client could prove that the CA is from a trusted set specified by the Verifier.
17Alternatively, an ABC Revocation Authority could create an accumulator for the revoked values.

Page 138 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

or in some WS-Trust profiles), this is more complicated but still could be possible.18 Moreover,
Identity Providers can also selectively deny access to users by refusing to issue security tokens
(discriminating on the requesting user or requested service).

• For authentication depending on knowledge of a user secret (e.g., username/password), phishing
attacks on the credential provided to the Identity Provider result in malicious access to all Relying
Parties that accept that identity.

• Strong authentication to the Identity Provider is often supported (including multi-factor asymmetric-
based authentication), but the resulting security tokens (e.g., SAML assertion, OAuth access token,
OpenID authentication response) are typically weaker software-only bearer token which can be
intercepted and replayed by adversaries.

• The Identity Provider typically learns which Relying Party the user is trying to access. For on-
demand security token issuance, this information is often provided to the Identity Provider in order
to protect the security token (e.g., to encrypt it for the Relying Party) or to redirect the user to the
right location. When security tokens are long-lived (like in PKI), this information is still available
if the Identity Providers and Relying Parties compare notes (since signatures on security tokens
generated using conventional cryptography are traceable).

• Central Identity Providers in on-demand federated systems limit the scalability of the systems
because if they are offline, users will not be able to access any Relying Parties. This makes them
interesting targets for denial of service attacks.

Privacy-ABC technologies help alleviate these issues by increasing the security, privacy, and scalability
of these systems. Indeed:

• Since Privacy-ABCs are by default untraceable, even when obtained on-demand, Identity Providers
are not able to track and trace the usage of the users’ information.

• Since Privacy-ABCs can be obtained in advance and stored by the user while still being able to
disclose the minimal amount of information needed for a particular transaction, the real-time burden
of the issuer is diminished, improving scalability.

• Since Privacy-ABCs are based on asymmetric cryptography, presenting login pseudonyms and
certified attributes involve using a private key unknown to the Issuer, meaning that the Identity
Provider (or another adversary) is unable to hijack the user’s identity at a particular Relying Party.

Privacy-ABC technologies offer a wide range of features; not all of them trivially compatible with the
systems presented in this section. The important point is that Privacy-ABC technologies offer a superset
of the functionality and of the security/privacy/scalability characteristics of these systems. Protocol
designers and architects can therefore pick and choose which features and characteristics they would like
to use to improve existing systems or their future revisions.

It is also important to note that Privacy-ABC technologies can be used in conjunction with these
frameworks, since many real-life applications won’t have the luxury to modify the existing standards
and development libraries. Most of the privacy concerns occur in cross-domain data sharing, i.e., when
information travels from one domain to another. Therefore, an ABC “proxy” can be used as a privacy
filter between domains using well-known federated token transformer pattern (such as the WS-Trust STS).
This is useful to avoid modifying legacy applications and infrastructure, and still benefit from the security
and privacy properties of Privacy-ABC technologies.

18As an example, in PKI, a Certificate Authority would not be able to re-issue a valid certificate containing the user’s
public key, but could re-issue one with a matching serial number and subject and key identifiers often used for user
authentication.

Page 139 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Glossary

Attribute A piece of information, possibly certified by a credential,
describing a characteristic of a natural person or entity, or
of the credential itself. An attribute consists of an
attribute type determining the semantics of the attribute
(e.g., first name) and an attribute value determining its
contents (e.g., John).

Certified pseudonym A verifiable pseudonym based on a user secret that also
underlies an issued credential. A certified pseudonym is
established in a presentation token that also demonstrates
possession of a credential bound to the same User (i.e., to
the same user secret) as the pseudonym.

Credential A list of certified attributes issued by an Issuer to a User.
By issuing a credential, the Issuer vouches for the
correctness of the contained attributes with respect to the
User.

Credential specification A data artifact specifying the list of attribute types that
are encoded in a credential.

Inspection An optional feature allowing a presentation token to be
de-anonymized by a dedicated Inspector. At the time of
creating the presentation token, the User is aware (through
the presentation policy) of the identity of the Inspector
and the valid grounds for inspection.

Inspection grounds The circumstances under which a Verifier may ask an
Inspector to trace the User who created a given
presentation token.

Inspection Requester Entity requesting an inspection from the Inspector,
asserting that inspection is compliant with the inspection
grounds specified or is legally required. In most cases this
will be the Verifier, but also may be the police, or other
legally authorized entity.

Inspector A trusted entity that can trace the User who created a
presentation token by revealing attributes from the
presentation token that were originally hidden from the
Verifier.

Issuance key The Issuer’s secret cryptographic key used to issue
credentials.

Issuer The party who vouches for the validity of one or more
attributes of a User, by issuing a credential to the User.

Issuer parameters A public data artifact containing cryptographic and other
information by means of which presentation tokens derived
from credentials issued by the Issuer can be verified.

Key binding The property of binding a credential to a user’s secret key,
so that the credential cannot be used in a presentation
without knowing the secret key. Key binding can be used
to prevent credential pooling and, by storing the secret key
on trusted hardware, to bind the credential to a physical
token.

Linkability See unlinkability.

Page 140 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Personal data “Personal data’ shall mean any information relating to an
identified or identifiable natural person (’data subject’); an
identifiable person is one who can be identified, directly or
indirectly, in particular by reference to an identification
number or to one or more factors specific to his physical,
physiological, mental, economic, cultural or social identity”,
Art. 2 (a) of Directive 95/46/EC. Within this deliverable
personal data is the terminology used for legal
considerations. See also Personally Identifiable Information
.

Presentation policy A policy created and published by a Verifier specifying the
class of presentation tokens that the Verifier will accept.
The presentation policy contains, among other things,
which credentials from which Issuers it accepts and which
information a presentation token must reveal from these
credentials.

Presentation token A collection of information derived from a set of
credentials, usually created and sent by a User to
authenticate to a Verifier. A presentation token can
contain information from several credentials, reveal
attribute values, prove that attribute values satisfy
predicates, sign an application-specific message or nonce or
support advanced features such as pseudonyms, device
binding, inspection, and revocation. The presentation
token consists of the presentation token description,
containing a technology-agnostic description of the
revealed information, and the presentation token evidence,
containing opaque technology-specific cryptographic
parameters in support of the token.

Pseudonym See verifiable pseudonym.
Pseudonym scope A string provided in the Verifier’s presentation policy as a

hint to the User which previously established pseudonym
she can use, or to which a new pseudonym should be
associated. A single User (with a single user secret) can
generate multiple verifiable or certified pseudonyms for the
same scope string, but can only generate a single
scope-exclusive pseudonym.

Revocation The act of withdrawing the validity of a previously issued
credential. Revocation is performed by a dedicated
Revocation Authority, which could be the Issuer, the
Verifier, or an independent third party. Which Revocation
Authorities must be taken into account can be specified by
the Issuer in the issuer parameters (Issuer-driven
revocation) or by the Verifier in the presentation policy
(Verifier-driven revocation).

Revocation Authority The entity in charge of revoking credentials. The
Revocation Authority can be an Issuer, a Relying Party, or
an independent entity. Multiple Issuers or Verifiers may
rely on the same Revocation Authority.

Page 141 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Revocation information The public information that a Revocation Authority
publishes every time a new credential is revoked or at
regular time intervals to allow Verifiers to check that a
presentation token was not derived from revoked
credentials.

Revocation parameters The public information related to a Revocation Authority,
containing cryptographic information as well as
instructions where and how the most recent revocation
information and non-revocation evidence can be obtained.
The revocation parameters are static, i.e., they do not
change every time a new credential is revoked or at regular
time intervals like the revocation information and
non-revocation evidence (may) do.

Non-revocation evidence The User-specific or credential-specific information that the
user agent maintains, allowing it to prove in presentation
tokens that the credential was not revoked. The
non-revocation evidence may need to be updated either at
regular time intervals or when new credentials are revoked.

Scope See pseudonym scope.
Scope-exclusive pseudonym A certified pseudonym that is guaranteed to be

cryptographically unique per scope string and per user
secret. Meaning, from a single user-bound credential, only
a single scope-exclusive pseudonym can be generated for
the same scope string.

Traceability See untraceability.
Unlinkability The property that different actions performed by the same

User, in particular different presentation tokens generated
by the same User, cannot be linked to each other as having
originated from the same User.

Untraceability The property that an action performed by a User cannot
be traced back to her identity. In particular, the property
that a presentation token generated by a User cannot be
traced back to the issuance of the credential from which
the token was derived.

User The human entity who wants to access a resource
controlled by a verifier and obtains credentials from Issuers
to this end.

User agent The software entity that represents the human User and
manages her credentials.

User secret A piece of secret information known to a User (either a
strong random secret or a human-memorizable password or
PIN code) underlying one or more issued credentials or
pseudonyms. A presentation token involving a pseudonym
or a user-bound credential implicitly proves knowledge of
the underlying user secret.

Verifiable pseudonym A public identifier derived from a user secret allowing a
User to voluntarily link different presentation tokens
created by her or to re-authenticate under a previously
established pseudonym by proving knowledge of the user
secret. Multiple unlinkable pseudonyms can be derived
from the same user secret.

Page 142 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Verifier The party that protects access to a resource by verifying
presentation tokens to check whether a User has the
requested attributes. The Verifier only accepts credentials
from Issuers that it trusts.

Page 143 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

Acronyms

ABCs Attribute Based Credentials
ABCE ABC Engine
CA Certificate Authority
CE Crypto Engine
ENISA European Network and Information Security Agency
FP7 Framework Programme 7
HTTP Hypertext Transfer Protocol
HTTPS HyperText Transfer Protocol Secure (HTTP secured by

TLS or SSL)
ID Identifier
Idemix IBM Identity Mixer
ICT Information and Communications Technology
IdM Identity Manager
ISO International Organisation for Standardisation
IdSP Identity Service Provider
PET Privacy Enhancing Technology
PRIME Privacy and Identity Management for Europe
PrimeLife Privacy and Identity Management in Europe for Life
PIN Personal Identification Number
RP Relying Party
SCI Smartcard Interface
SSL Secure Sockets Layer
STS Secure Token Service
TLS Transport Layer Security
URI Uniform Resource Identifier
XML eXtensible Markup Language

Page 144 of 148 Public Final version 1.0

ABC4Trust Deliverable D2.2

References

[Alv01] H. Alvestrand. Rfc 3066: Tags for the identification of languages. http://tools.ietf.org/
rfc/rfc3066.txt, January 2001.

[BBF+02] Mark Bartel, John Boyer, Barb Fox, Brian LaMacchia, and Ed Simon. XML-Signature Syntax
and Processing. http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/, February
2002.

[BCD+13] Patrik Bichsel, Jan Camenisch, Maria Dubovitskaya, Robert R. Enderlein, Anja Lehmann,
Gregory Neven, and Dieter Sommer. H2.3 – abc4trust crypto architecture. ABC4Trust
Heartbeat H2.3, 2013. Available from https://abc4trust.eu.

[BCGS09] Patrik Bichsel, Jan Camenisch, Thomas Groß, and Victor Shoup. Anonymous credentials
on a standard java card. In Proceedings of the 16th ACM conference on Computer and
communications security, pages 600–610. ACM, 2009.

[BDDD07] Stefan Brands, Liesje Demuynck, and Bart De Decker. A practical system for globally revoking
the unlinkable pseudonyms of unknown users. In Information Security and Privacy, pages
400–415. Springer, 2007.

[BP97] N. Barić and B. Pfitzmann. Collision-Free Accumulators and Fail-Stop Signature Schemes
Without Trees. In W. Fumy, editor, EUROCRYPT, volume 1233 of LNCS, pages 480–494.
Springer, 1997.

[Bra] Stefan Brands. The id corner blog. the problem(s) with openid. http://www.untrusted.ca/
cache/openid.html.

[Bra93] S. Brands. An Efficient Off-line Electronic Cash System Based On The Representation
Problem. Technical report, 1993.

[Bra94] Stefan Brands. Untraceable off-line cash in wallet with observers. In Advances in Cryptology –
CRYPTO’93, pages 302–318. Springer, 1994.

[Bra97] Scott Bradner. Rfc 2119: Key words for use in rfcs to indicate requirement levels. http:
//www.rfc-editor.org/rfc/rfc2119.txt, March 1997.

[Bra00] Stefan A Brands. Rethinking public key infrastructures and digital certificates: building in
privacy. MIT Press, 2000.

[Cam06] Jan Camenisch. Protecting (anonymous) credentials with the trusted computing group’s tpm
v1. 2. In Security and Privacy in Dynamic Environments, pages 135–147. Springer, 2006.

[CC+08] Jan Camenisch, Rafik Chaabouni, et al. Efficient protocols for set membership and range
proofs. In Advances in Cryptology – ASIACRYPT 2008, pages 234–252. Springer, 2008.

[CDF+] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. Openpgp message format.
http://www.rfc-editor.org/rfc/rfc4880.txt.

[CG08] Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials. In
Proceedings of the 15th ACM conference on Computer and communications security, pages
345–356. ACM, 2008.

[Cha83] David Chaum. Blind signatures for untraceable payments. In Advances in cryptology, pages
199–203. Springer, 1983.

[Cha85] David Chaum. Security without identification: Transaction systems to make big brother
obsolete. Communication of the ACM, 28(10):1030–1044, 1985.

[CHK+06] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and Mira
Meyerovich. How to win the clonewars: efficient periodic n-times anonymous authenti-
cation. In Proceedings of the 13th ACM conference on Computer and communications security,
pages 201–210. ACM, 2006.

Page 145 of 148 Public Final version 1.0

http://tools.ietf.org/rfc/rfc3066.txt
http://tools.ietf.org/rfc/rfc3066.txt
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
https://abc4trust.eu
http://www.untrusted.ca/cache/openid.html
http://www.untrusted.ca/cache/openid.html
http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc4880.txt

ABC4Trust Deliverable D2.2

[CHL06] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Balancing accountability and
privacy using e-cash. In Security and Cryptography for Networks, pages 141–155. Springer,
2006.

[CKL+14] Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Læssø e Mikkelsen, Gregory Neven, and
Michael østergaard Pedersen. Scientific comparison of ABC protocols part I - formal treatment
of privacy-enhancing credential systems. ABC4Trust Deliverable D3.1, 2014. Available from
https://abc4trust.eu.

[CKS09] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based on bilinear
maps and efficient revocation for anonymous credentials. In Public Key Cryptography–PKC
2009, pages 481–500. Springer, 2009.

[CKY09] J. Camenisch, A. Kiayias, and M. Yung. On the Portability of Generalized Schnorr Proofs.
In A. Joux, editor, EUROCRYPT 09, volume 5479 of LNCS, pages 425–442. Springer, 2009.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In Advances in Cryptology – EUROCRYPT
2001, pages 93–118. Springer, 2001.

[CL02a] J. Camenisch and A. Lysyanskaya. A Signature Scheme with Efficient Protocols. In S. Cimato,
C. Galdi, and G. Persiano, editors, SCN 02, volume 2576 of LNCS, pages 268–289. Springer,
2002.

[CL02b] J. Camenisch and A. Lysyanskaya. Dynamic Accumulators and Application to Efficient
Revocation of Anonymous Credentials. In M. Yung, editor, CRYPTO, volume 2442 of LNCS,
pages 61–76. Springer, 2002.

[CL02c] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient
revocation of anonymous credentials. In Advances in Cryptology – CRYPTO 2002, pages
61–76. Springer, 2002.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In Advances in Cryptology – CRYPTO 2004, pages 56–72. Springer, 2004.

[CS97] J. Camenisch and M. Stadler. Efficient Group Signature Schemes for Large Groups (Extended
Abstract). In B. S. Kaliski Jr., editor, CRYPTO, volume 1294 of LNCS, pages 410–424.
Springer, 1997.

[CS02] R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In L. R. Knudsen, editor, EUROCRYPT, volume
2332 of LNCS, pages 45–64. Springer, 2002.

[CS03a] J. Camenisch and V. Shoup. Practical Verifiable Encryption and Decryption of Discrete
Logarithms. In D. Boneh, editor, CRYPTO, volume 2729 of LNCS, pages 126–144. Springer,
2003.

[CS03b] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete
logarithms. In Advances in Cryptology – CRYPTO 2003, pages 126–144. Springer, 2003.

[DF02] I. Damgård and E. Fujisaki. A Statistically-Hiding Integer Commitment Scheme Based on
Groups with Hidden Order. In Y. Zheng, editor, ASIACRYPT 02, volume 2501 of LNCS,
pages 125–142. Springer, 2002.

[DFLP07] Nelly Delessy, Eduardo B. Fernandez, and Maria M. Larrondo-Petrie. A pattern language for
identity management. In Proceedings of the International Multi-Conference on Computing
in the Global Information Technology, ICCGI ’07, pages 31–, Washington, DC, USA, 2007.
IEEE Computer Society.

[DW10] Arkajit Dey and Stephen Weis. Pseudoid: Enhancing privacy in federated login. In Hot
Topics in Privacy Enhancing Technologies, pages 95–107, 2010.

[Eck10] Peter Eckersley. How unique is your web browser? In Mikhail J. Atallah and Nicholas J.
Hopper, editors, Privacy Enhancing Technologies, volume 6205 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2010.

Page 146 of 148 Public Final version 1.0

https://abc4trust.eu

ABC4Trust Deliverable D2.2

[Fac] Facebook login. https://developers.facebook.com/products/login/.

[Fid] Fido alliance. http://fidoalliance.org.

[FO97] E. Fujisaki and T. Okamoto. Statistical Zero Knowledge Protocols to Prove Modular Polyno-
mial Relations. In B. S. Kaliski Jr., editor, CRYPTO 97, volume 1294 of LNCS, pages 16–30.
Springer, 1997.

[FP10] Walter Fumy and Manfred Paeschke. Handbook of EID Security: Concepts, Practical Experi-
ences, Technologies. John Wiley & Sons, 2010.

[FS87] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and
Signature Problems. In A. M. Odlyzko, editor, CRYPTO 86, volume 263 of LNCS, pages
186–194. Springer, 1987.

[Har04] Russell Hardin. Trust and trustworthiness, volume 4. Russell Sage Foundation, 2004.

[Har12] D. Hardt. Oauth 2.0 authorization protocol. http://tools.ietf.org/html/rfc6749, Octo-
ber 2012.

[HBH07] Dick Hardt, Johnny Bufu, and Josh Hoyt. Openid attribute exchange 1.0. http://openid.
net/specs/openid-attribute-exchange-1_0.html, December 2007.

[HTEG10] D. Hardt, A. Tom, B. Eaton, and Y. Goland. Oauth web resource authorization profiles.
http://tools.ietf.org/html/draft-hardt-oauth-01, January 2010. draft version 19 at
time of writing.

[JBT] M. Jones, J. Bradley, and H. Tschofenig. Proof-of-possession semantics for json web tokens
(jwts). http://tools.ietf.org/html/draft-jones-oauth-proof-of-possession-00.

[JP04] Audun Josang and Stephane Lo Presti. Analysing the relationship between risk and trust.
In Christian Jensen, Stefan Poslad, and Theo Dimitrakos, editors, Second International
Conference on Trust Management (iTrust 2004), volume LNCS 2, pages 135–145. Springer,
2004. Event Dates: March 29 - April 1st 2004.

[JWT] Json web token (jwt). http://datatracker.ietf.org/doc/
draft-ietf-oauth-json-web-token. draft version 19 at time of writing.

[KBC05] Tadayoshi Kohno, Andre Broido, and Kimberly C Claffy. Remote physical device fingerprinting.
Dependable and Secure Computing, IEEE Transactions on, 2(2):93–108, 2005.

[KTMM09] Uwe Kylau, Ivonne Thomas, Michael Menzel, and Christoph Meinel. Trust requirements
in identity federation topologies. In Proceedings of the 2009 International Conference on
Advanced Information Networking and Applications, AINA ’09, pages 137–145, Washington,
DC, USA, 2009. IEEE Computer Society.

[Lip03] H. Lipmaa. On Diophantine Complexity and Statistical Zero Knowledge Arguments. In C.-S.
Laih, editor, ASIACRYPT 03, volume 2894 of LNCS, pages 398–415. Springer, 2003.

[LSK12] Jesus Luna, Neeraj Suri, and Ioannis Krontiris. Privacy-by-design based on quantitative threat
modeling. In Risk and Security of Internet and Systems (CRiSIS), 2012 7th International
Conference on, pages 1–8. IEEE, 2012.

[MC96] D. Harrison Mcknight and Norman L. Chervany. The meanings of trust. Technical report,
1996.

[MCM14] C. Mortimore, B. Campbell, and Jones M. Saml 2.0 bearer assertion profiles for oauth 2.0.
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-19, March 2014. draft
version 19 at time of writing.

[N.11] Smart N. ECRYPT II Yearly Report on Algorithms and Keysizes (2010-2011). Katholieke
Universiteit Leuven (KUL). Deliverable SPA-17. rob. Online: http://www.ecrypt.eu.org/
documents/D.SPA.17.pdf, June 2011.

[NA09] European Network and Information Security Agency. Privacy features of european eid
card specifications – position paper. http://www.enisa.europa.eu/act/it/ privacy-and-trust/
eid/eid-cards-en, February 2009.

Page 147 of 148 Public Final version 1.0

https://developers.facebook.com/products/login/
http://fidoalliance.org
http://tools.ietf.org/html/rfc6749
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://tools.ietf.org/html/draft-hardt-oauth-01
http://tools.ietf.org/html/draft-jones-oauth-proof-of-possession-00
http://datatracker.ietf.org/doc/draft-ietf-oauth-json-web-token
http://datatracker.ietf.org/doc/draft-ietf-oauth-json-web-token
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-19
http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
http://www.ecrypt.eu.org/documents/D.SPA.17.pdf

ABC4Trust Deliverable D2.2

[Ngu05] Lan Nguyen. Accumulators from bilinear pairings and applications. In Topics in Cryptology –
CT-RSA 2005, pages 275–292. Springer, 2005.

[O’H04] Kieron O’Hara. Trust: From Socrates to Spin. Icon Books Ltd, 2004.

[Ope] Openid connect. http://openid.net/connect/.

[Ope07] Openid authentication 2.0. http://openid.net/specs/openid-authentication-2_0.html,
December 2007.

[Pai99] P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In
J. Stern, editor, EUROCRYPT, volume 1592 of LNCS, pages 223–238. Springer, 1999.

[Ped91] T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing.
In J. Feigenbaum, editor, CRYPTO 91, volume 576 of LNCS, pages 129–140. Springer, 1991.

[RS86] Rabin and Shallit. Randomized Algorithms in Number Theory. Communications in Pure
and Applied Math, 39:239–256, 1986.

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[SAM05] Assertions and protocols for the oasis security assertion markup language (saml) v2.0. http:
//docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf, March 2005.

[Sch91] C. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology, 4(3):161–
174, 1991.

[Sta05] OASIS Standard. extensible access control markup language (xacml) version 2.0. http://docs.
oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf, February
2005.

[Sta09a] OASIS Standard. Identity metasystem interoperability version 1.0. http://docs.oasis-open.
org/imi/identity/v1.0/identity.html, July 2009.

[Sta09b] OASIS Standard. Ws-trust 1.4. http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/
ws-trust.html, February 2009.

[UPW11] U-prove ws-trust profile v1.0. http://www.microsoft.com/u-prove, March 2011.

[WSF09] Web services federation language (ws-federation) version 1.2. http://docs.oasis-open.
org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html, May 2009.

[WSS07] Ws-securitypolicy 1.2. http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/
ws-securitypolicy-1.2-spec-cs.html, April 2007.

[WST09] Ws-trust 1.4. http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.
4-spec-os.html, February 2009.

[X50] X.509 : Information technology - open systems interconnection - the directory : Public/key
and attribute certificate frameworks. http://www.itu.int/rec/T-REC-X.509/en.

Page 148 of 148 Public Final version 1.0

http://openid.net/connect/
http://openid.net/specs/openid-authentication-2_0.html
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/imi/identity/v1.0/identity.html
http://docs.oasis-open.org/imi/identity/v1.0/identity.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html
http://www.microsoft.com/u-prove
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-cs.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-cs.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.html
http://www.itu.int/rec/T-REC-X.509/en

	Introduction
	Privacy issues of current IdM systems
	IdSP knows all user transactions
	Linkability across domains
	Proportionality often violated

	Privacy-preserving Attribute-based Credentials
	Privacy-ABCs Highlights

	The ABC4Trust Project
	The ABC4Trust Architecture
	Goals of the Architecture
	Architectural Strategies

	Structure of the document
	What is new compared to H2.2

	 Features and Concepts of Privacy-ABCs
	Credentials
	Presentation
	Key Binding
	Pseudonyms
	Inspection
	Credential Issuance
	Revocation
	Security and Privacy Features
	Basic Presentation
	Key Binding
	Advanced Issuance
	Pseudonyms
	Inspection
	Revocation

	Architecture
	Architectural Design
	Application Layer
	ABCE Layer
	Crypto Layer
	Storage & Communication Components

	Deployment of the Architecture
	Setup and Storage
	Presentation of a Token
	Issuance of a Credential
	Inspection
	Revocation

	ABC4Trust Protocol Specification
	Terminology and Notation
	Notational Conventions
	Namespaces

	Setup
	Credential Specification
	System Parameters
	Issuer Parameters
	Inspector Public Key
	Verifier Parameters

	Revocation
	Revocation Authority Parameters
	Revocation Information
	Non-Revocation Evidence

	Presentation
	Presentation Policy
	Presentation Token
	Functions for Use in Predicates

	Issuance
	Issuance Policy
	Issuance Token
	Issuance Messages
	Issuance Log Entries
	Revocation History
	Credential Description

	Identity Selection and Credential Management
	Presentation
	Issuance

	Formats Used By the Webservice API
	CredentialSpecificationAndSystemParameters
	IssuancePolicyAndAttributes
	IssuanceMessageAndBoolean
	RevocationReferences
	PresentationPolicyAlternativesAndPresentationToken
	AttributeList
	ABCEBoolean
	URISet
	IssuerParametersInput
	IssuanceReturn

	API for Privacy-ABCs
	ABCE methods for Users
	ABCE methods for Verifiers
	ABCE methods for Issuers
	ABCE methods for Revocation Authorities
	ABCE methods for Inspectors

	Crypto Architecture
	Overview of Cryptographic Architecture
	Key Generation Orchestration
	Presentation Orchestration
	Verification Orchestration
	Issuance Orchestration
	Building Blocks
	Proof Engine

	Cryptographic Primitives
	Algebraic Background
	Zero-Knowledge Proofs of Knowledge
	Commitment Schemes
	Blind Signature Schemes
	Verifiable Encryption
	Scope-Exclusive Pseudonyms
	Revocation

	A Case Study based on Privacy-ABCs
	Example Scenario
	Credential Specification
	Issuer, Revocation, and System Parameters
	Presentation and Issuance Policies with Basic Features
	Presentation and Issuance Token
	Presentation Policy with Extended Features
	Interaction with the User Interface

	Trust Relationships in the Ecosystem of Privacy-ABCs
	Definition of Trust
	Related Work
	Trust Relationships
	Assumptions
	Trust by all the parties
	Users' Perspective
	Verifiers' Perspective
	Issuers' Perspective
	Inspectors' Perspective
	Revocation Authorities' Perspective

	Applicability to existing Identity Infrastructures
	WS-*
	SAML
	OpenID
	OAuth
	Authorization grant
	Access token

	X.509 PKI
	Integration summary

