

Privacy-ABCs Features and Architecture

Ahmad Sabouri (ahmad.sabouri@m-chair.de)
Deutsche Telekom Chair of Mobile Business & Multilateral Security
Goethe University Frankfurt, Germany
www.m-chair.de

The ABC4Trust Architecture Objectives

- Abstraction of concepts of Privacy-ABCs & unification of features
- A common unified architecture
 - That is independent of the specific technologies
 - Federation of privacy-ABC Systems based on different technologies
 - Interoperability between different privacy-ABC technologies
- Users will be able to
 - obtain credentials for many privacy-ABC technologies and
 - use them on the same hardware and software platforms
 - without having to consider which privacy-ABC technology has been used
- How do we achieve this?
 - System Architecture and components for handling privacy-ABCs
 - Unified and technology agnostic APIs
 - XML specification of all data formats, covering the full life-cycle of credentials

Goal of the Presentation

We aim to:

- give an impression of the features and concepts of the Privacy-ABCs to all the audiences.
- introduce the architecture, processes, and the artifacts to application and infrastructure developers.

Example Scenario

Features Privacy-ABCs

- Credential issuance
 - list of pairs (attribute, value)
 - certified by issuer
 - key-bound to prevent sharing credentials
 - advanced issuance:
 - blindly issued attributes
 - carried-over attributes (e.g. transfer an identifier to a tombola credential)

Features Privacy-ABCs (2)

Presentation

- selected attributes from selected credentials
- predicates over attributes
 - attribute1 =,>,< attribute2 or constant

Pseudonyms

- equivalent to unlinkable public keys for user's secret key
- controlled linkability (e.g., account creation)
- scope-exclusive pseudonym: unique per scope, unlinkable across different scopes

Features Privacy-ABCs (3)

Inspection

- attribute value encrypted to trusted Inspector
- token bound to inspection grounds: conditions to decrypt
- e.g., de-anonymization in case of abuse

Revocation

- credentials' validity
- e.g., credential compromise, changed attributes

Interactions and Entities

High-level view (user)

High-level view (presentation)

Presentation Policy


```
<?xml version="1.0" encoding="UTF-8"?>
  <PresentationPolicyAlternatives xmlns="http://abc4trust.eu/wp2/abcschemav1.0"</pre>
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
      xmlns:xs="http://www.w3.org/2001/XMLSchema"
      xmlns:xenc="http://www.w3.org/2001/04/xmlenc"
      xsi:schemaLocation="http://abc4trust.eu/wp2/abcschemav1.0 schema.xsd"
      Version="1.0">
  <PresentationPolicy PolicyUID="policy1" EnforceSameUserBinding="true" EnforceSameDeviceBinding="false">
10
11
      <Message>
12
           <Nonce>aDk3UEMz0TNj0Tl1cmZHQ210U0c=</Nonce>
      </Message>
      <Pseudonvm Alias="nym" Scope="http://sweden.gov/poll0105" Exclusive="true"/>
15
      <Credential Alias="id">
          <CredentialSpecAlternatives>
17
               <CredentialSpecUID>urn:sweden:id</CredentialSpecUID>
          </CredentialSpecAlternatives>
19
           <IssuerAlternatives>
20
               <IssuerParametersUID>urn:sweden:id:issuer</IssuerParametersUID>
21
           </IssuerAlternatives>
22
           <DisclosedAttribute AttributeType="urn:sweden:id:city"/>
23
      </Credential>
24
      <AttributePredicate Function="urn:oasis:names:tc:xacml:1.0:function:date-less-than">
25
          <a href="AttributeCredentialAlias="id" AttributeType="urn:sweden:id:bdate"/>
26
           <ConstantValue>1994-01-20</ConstantValue>
27
      </AttributePredicate>
28
  </PresentationPolicy>
  </PresentationPolicyAlternatives>
```


ABC4Trust Crypto Architecture (1)

ABC4Trust Crypto Architecture (2)

Benchmarking Criteria

In the architecture WP, we produced a set of benchmarking criteria allowing comparison of different Privacy-ABC technologies based on:

1. Efficiency

- Theoretical vs. practical
- Computational vs. communication vs. storage
- **2. Functionality:** The supported functionalities, privacy features, and other practical considerations/implications

3. Security:

- Security assumptions: (i) *information theoretic*, (ii) *computational* or (iii) *without security reduction/proof*.
- Mechanisms in place to fulfill different security requirements
- **4. Legal**: Legal criteria regarding user's privacy, and requirements for the other entities
- **5. Economic viability:** Key issues that impact the economical value of a choice of a certain combination of technologies

Summary

- ABC4Trust produced a generic and layered architecture for Privacy-ABCs:
 - Defining features, processes, and artifacts
 - Enabling the Reference Implementation and the Pilots
 - Preventing lock-in situations
- The architecture is more privacy-friendly than the available alternatives, e.g. STORK, which is important for the eIDAS discussion.
- The ABC4Trust Crypto Architecture enables modular instantiation of new Privacy-ABC technologies.

Questions?

Thanks for Your Attention

coord-abc4trust@m-chair.de

