Privacy-ABCs
Features and Architecture

Ahmad Sabouri (ahmad.sabouri@m-chair.de)
Deutsche Telekom Chair of Mobile Business & Multilateral Security
Goethe University Frankfurt, Germany
www.m-chair.de

A research project funded by the European Commission’s 7th Framework Programme
The ABC4Trust Architecture Objectives

• Abstraction of concepts of Privacy-ABCs & unification of features

• A common unified architecture
 ▪ That is independent of the specific technologies
 ▪ Federation of privacy-ABC Systems based on different technologies
 ▪ Interoperability between different privacy-ABC technologies

• Users will be able to
 ▪ obtain credentials for many privacy-ABC technologies and
 ▪ use them on the same hardware and software platforms
 ▪ without having to consider which privacy-ABC technology has been used

• How do we achieve this?
 ▪ System Architecture and components for handling privacy-ABCs
 ▪ Unified and technology agnostic APIs
 ▪ XML specification of all data formats, covering the full life-cycle of credentials
Goal of the Presentation

• We aim to:

 ▪ give an impression of the features and concepts of the Privacy-ABCs to all the audiences.

 ▪ introduce the architecture, processes, and the artifacts to application and infrastructure developers.
Example Scenario

Name: Alice
Birthdate: 02.05.1986

Identity Service Provider
requirement = Name?
untraceable

Service Provider #1
requirement = Name?
unlinkable

Service Provider #2
requirement = Age > 18

User
Birthdate < 02.09.1996
Features Privacy-ABCs

• Credential issuance

 ▪ list of pairs (attribute, value)
 ▪ certified by issuer
 ▪ key-bound to prevent sharing credentials
 ▪ advanced issuance:
 • blindly issued attributes
 • carried-over attributes (e.g. transfer an identifier to a tombola credential)
Features Privacy-ABCs (2)

• Presentation
 ▪ selected attributes from selected credentials
 ▪ predicates over attributes
 • \(\text{attribute1} =,>,< \text{attribute2} \text{ or constant} \)

• Pseudonyms
 ▪ equivalent to unlinkable public keys for user’s secret key
 ▪ controlled linkability (e.g., account creation)
 ▪ scope-exclusive pseudonym: unique per scope, unlinkable across different scopes
• Inspection
 - attribute value encrypted to trusted Inspector
 - token bound to inspection grounds: conditions to decrypt
 - e.g., de-anonymization in case of abuse

• Revocation
 - credentials’ validity
 - e.g., credential compromise, changed attributes
Interactions and Entities

- **Issuer**
- **User**
- **Verifier**
- **Inspector**

Credential Issuance

Revocation Authority

Revocation Info Retrieval

Token Presentation

Token Inspection

Credential Revocation
High-level view (user)

- Technology-agnostic credential & policy handling
- Unified and technology-independent APIs

 Diagram:

- **ABCE** (Attribute-based Credentials Engine)
- Crypto Engine (e.g. Idemix, U-Prove)
- KeyManager
- Revocation Proxy
- Ext. Device Interface
- Identity Selector
- Browser/Application
High-level view (presentation)

Language framework covering the full life-cycle of credentials and support all concepts.

User Side Deployment:
- User
- Identity Selector
- Policy-Credential Matcher
- Evidence Generation Orchestration
- Credential Manager
- Crypto Engine (e.g. Idemix, U-Prove)

Verifier Side Deployment:
- Verifier
- Policy-Token Matcher
- Evidence Verification Orchestration
- Token Manager
- Crypto Engine (e.g. Idemix, U-Prove)

Request resource via presentation policy, then presentation token.
<?xml version="1.0" encoding="UTF-8"?>

<presentationPolicy xmlns:schema="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xml="http://www.w3.org/2001/XMLSchema"
xmlns:xenc="http://www.w3.org/2001/XMLSchema"
xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:urn="urn:oasis:names:tc:xacml:1.0:assertion:binding">
 <presentationPolicyPolicyUID="policy1" EnforceSameUserBinding="true" EnforceSameDeviceBinding="false">
 <message>
 <Nonce>aDk3UEm2OTNj0T1cmZH210U0c==</Nonce>
 </message>
 <credential Alias="id">
 <credentialSpecAlternatives>
 <credentialSpecUID>urn:sweden:id</credentialSpecUID>
 </credentialSpecAlternatives>
 <issuerAlternatives>
 <IssuerParametersUID>urn:sweden:id:issuer</IssuerParametersUID>
 </IssuerAlternatives>
 <disclosedAttribute AttributeType="urn:sweden:id:city"/>
 </credential>
 <attributePredicate Function="urn:oasis:names:tc:xacml:1.0:assertion:binding:date-less-than">
 <attribute CredentialAlias="id" AttributeType="urn:sweden:id:birthdate">
 <constantValue>1994-01-20</constantValue>
 </attribute>
 </attributePredicate>
 </presentationPolicyPolicy>
</presentationPolicyPolicyAlternatives>
ABC4Trust Crypto Architecture (1)
ABC4Trust Crypto Architecture (2)
In the architecture WP, we produced a set of benchmarking criteria allowing comparison of different Privacy-ABC technologies based on:

1. **Efficiency**
 - Theoretical vs. practical
 - Computational vs. communication vs. storage

2. **Functionality**: The supported functionalities, privacy features, and other practical considerations/implications

3. **Security**:
 - Security assumptions: (i) *information theoretic*, (ii) *computational* or (iii) *without security reduction/proof*.
 - Mechanisms in place to fulfill different security requirements

4. **Legal**: Legal criteria regarding user’s privacy, and requirements for the other entities

5. **Economic viability**: Key issues that impact the economical value of a choice of a certain combination of technologies
Summary

- ABC4Trust produced a generic and layered architecture for Privacy-ABCs:
 - Defining features, processes, and artifacts
 - Enabling the Reference Implementation and the Pilots
 - Preventing lock-in situations

- The architecture is more privacy-friendly than the available alternatives, e.g. STORK, which is important for the eIDAS discussion.

- The ABC4Trust Crypto Architecture enables modular instantiation of new Privacy-ABC technologies.
Questions?

Thanks for Your Attention

coord-abc4trust@m-chair.de