Privacy-ABC technology on Mobile Phones

by Gert Læssøe Mikkelsen,
Alexandra Institute
Challenges and possibilities.

- Pilots and Reference implementation
 - Focus on Client(PC)-Server and smartcards
- Users are using mobile devices
- Smart Phone feasibility study

- Users bring their smart phones everywhere
- New Use cases – e.g., in the physical world.
 - Now even iPhones come with NFC – currently very restricted!
Challenges on mobile devices

• Platform?:
 ▪ Native – very diverse
 • Android, iOS, Windows Phone etc.
 ▪ Common language: JavaScript?
 ▪ Cloud IdMaaS?

• Computational power?
• Storage of keys and credentials.
• Usability
p-ABC on mobile devices

- Relevant roles
 - User
 - Part of User’s SW (Smart Card emulation)
 - Verifier
 - Inspection

- Not so relevant roles
 - Issuer
 - Revocation authority
Smart Card emulation

- Proof of concept
- Still Client(PC)-server setup
 - + Development time
 - + Performance
 - + Convenience for the user
 - + User interface
- - Security
- - Devices
Native App

- Implemented the user service from the ABC4Trust reference implementation as a mobile service-app
- Android!
 - ABC4Trust Reference implementation in Java
- Security
 - Keys/Credential stored in ABC4Trust App’s internal memory
- Usability?
Native App

Smartphone

Application

1: Request

2: Policy/Verifier URL

p-ABC App

3: Policy/Verifier URL

4: Presentation Token

5: Session Key and revealed Attributes

6: Session Key

7: Session Key

Service Provider

Verifier
Native App

Danish Literature

The-very-cool-course

Privacy and Security 101

The following request was sent from Course evaluation of The-very-cool-course:

Show that you own a Course Credential and reveal the value of course id (which is The-very-cool-course).

Show that you own a University Credential

Present a scope-exclusive pseudonym for the scope urn:patras:evaluation.

OK

Cancel
MS U-Prove Native App.

- MS U-Prove C# version can run on Windows Phones
JavaScript?

• JavaScript is highly cross platform
 ▪ Everything with a modern browser
 ▪ Not build for security/Cryptography
 ▪ Where to store keys/credentials securely?
 • Server side?
 • Cookies?
 • Browser Key store?
 • Issue when needed?
JavaScript Prototype

• Prototype implementation of MS U-Prove
 ▪ U-Prove is simpler than the ABC4Trust reference implementation and Identity Mixer.

• Elliptic Curves using “jsbn” (“Stanford”) library.

• Interacts with MS U-Prove C# version
JavaScript

Smartphone

Browser

ABC4Trust.eu only!

1: Request

3: Presentation token

2: Crypto.js

ABC4Trust.eu

Service Provider
JavaScript Performance

- Very dependent on platform, and use of libraries!
- Our implementation:
 - 2.1 sec (Galaxy Nexus, default browser)
 - 30 sec (iPhone 5, Safari)
- Others are getting very different timings, with iPhones nearly as fast as Androids.
JavaScript the new language for Crypto?

• A lot is happening!
 - Since this task of the project was finished:

 • Microsoft U-Prove JavaScript (July 2014)
 • Microsoft Research JavaScript Cryptography Library (August 2014)
 • Google End-to-end Chrome Extension (June 2014)
Conclusion

• Using p-ABC’s on mobile devices is feasible
 ▪ both as native applications and JavaScript.
• New use cases/improved user experience.
• New security issues
 ▪ mobile devices are vulnerable to a number of attacks which should be addressed.
• A lot is happening on JavaScript right now.
• D4.4 Smartphone feasibility analysis (www.abc4trust.eu)