Privacy-ABC Technologies – on Mobile Phones

Dr. Gert Læssøe Mikkelsen,
Alexandra Institute A/S

ABC4Trust Summit Event
Brussels, January 20, 2015
Challenges and possibilities.

• Pilots and Reference implementation in ABC4Trust
 ▪ Focus on Client(PC)-Server and smartcards
• Users are using mobile devices
• Users bring their smart phones everywhere
• New Use cases – e.g., in the physical world.
 ▪ Now even iPhones come with NFC – currently very restricted!

NEM ID Apple Pay Google wallet
Challenges on mobile devices

• **Platform?:**
 - Native – very diverse
 - Android, iOS, Windows Phone etc.
 - Common language: JavaScript?
 - Cloud IdMaaS?
 - HW support?

• Computational power?
• Storage of keys and credentials.
• Usability
Smart Phone Feasibility Study

- Focus on what can be done with current technology
- Focus on functionality

- 3 Proof of Concepts
 - Smart Card emulation
 - Native App
 - Java Script

- Relevant roles
 - User
 - Part of User’s SW (Smart Card emulation)
 - Verifier
 - Inspection

- Not so relevant roles
 - Issuer
 - Revocation authority
Smart Card emulation

- Still Client(PC)-server setup
 + Development time
 + Performance
 + User Convenience
 + User interface
 + No additional HW
- Security
- Devices
Native App

user service of ABC4Trust reference implementation as mobile service-app

• Android!
 ▪ ABC4Trust Reference implementation in Java

• Security
 ▪ Keys/Credential stored in ABC4Trust App’s internal memory

• Usability?
Native App

1: Request
2: Policy/Verifier URL
4: Presentation Token
5: Session Key and revealed Attributes
6: Session Key
7: Session Key

Smartphone
Application
p-ABC App

Service Provider
Verifier

Gert Løssøe Mikkelsen, Alexandra Institute A/S
Native App

Danish Literature
The-very-cool-course
Privacy and Security 101

The following request was sent from Course evaluation of The-very-cool-course:

Show that you own a Course Credential and reveal the value of course id (which is The-very-cool-course).

Show that you own a University Credential

Present a scope-exclusive pseudonym for the scope urn:patras:evaluation.
MS U-Prove Native App.

- MS U-Prove C# version can run on Windows Phones
JavaScript?

- JavaScript is highly cross-platform
 - Every device with a modern browser
 - Not built for security/Cryptography
 - How to verify the code?
 - Has someone changed the code server side?
 - Do I get the same code as everyone else?
 - Where to store keys/credentials securely?
 - Server side?
 - Cookies?
 - Local storage?
 - Issue when needed?
JavaScript Prototype

- Prototype implementation of MS U-Prove
 - U-Prove is simpler than the ABC4Trust reference implementation and Identity Mixer.
- Compatible with MS U-Prove C# library
Smartphone

Browser

ABC4Trust.eu only!

Service Provider

1: Request

3: Presentation token

2: Crypto.js

ABC4Trust.eu

ABC4Trust.eu only!
JavaScript Performance

• Very dependent on platform, and use of libraries!
• Our implementation:
 ▪ 2.1 sec (Galaxy Nexus, default browser)
 ▪ 30 sec (iPhone 5, Safari)

• Microsoft implementation: iPhones nearly as fast as Androids.
JavaScript the new language for Crypto?

A lot is happening - Since this task of the project was finished:

- Microsoft U-Prove JavaScript (July 2014)
- Microsoft Research JavaScript Cryptography Library (August 2014)
- Google End-to-end Chrome Extension (June 2014)
- W3C Cryptography API
Security Mobile Devices.

- Subject to malware attacks
- Subject to physical theft

- Define a threat model
- Security improvements
 - Secure elements
 - Direct Anonymous Attestation TPM
 - SIM cards
 - Smart card read by the smartphone.
Conclusion

• Using p-ABC’s on mobile devices is feasible
 ▪ both as native applications and JavaScript.

• New use cases/improved user experience.

• New security issues
 ▪ Mobile devices vulnerable to a number of attacks - should be addressed according to the threat model.

• A lot is happening on JavaScript right now.

• D4.4 Smartphone feasibility analysis
 www.abc4trust.eu