Privacy-ABC Technologies – on Mobile Phones

Dr. Gert Læssøe Mikkelsen, Alexandra Institute A/S

ABC4Trust Summit Event Brussels, January 20, 2015

Challenges and possibilities.

- Pilots and Reference implementation in ABC4Trust
 - Focus on Client(PC)-Server and smartcards
- Users are using mobile devices

- Users bring their smart phones everywhere
- New Use cases e.g., in the physical world.
 - Now even iPhones come with NFC currently very restricted!

DI M3N

Challenges on mobile devices

Platform?:

Windows Phone

- Native very diverse
 - Android, iOS, Windows Phone etc.
- Common language: JavaScript?
- Cloud IdMaaS?
- HW support?
- Computational power?
- Storage of keys and credentials.
- Usability

Smart Phone Feasibility Study

- Focus on what can be done with current technology
- Focus on functionality
- 3 Proof of Concepts
 - Smart Card emulation
 - Native App
 - Java Script

- Relevant roles
 - User
 - Part of User's SW (Smart Card emulation)
 - Verifier
 - Inspection

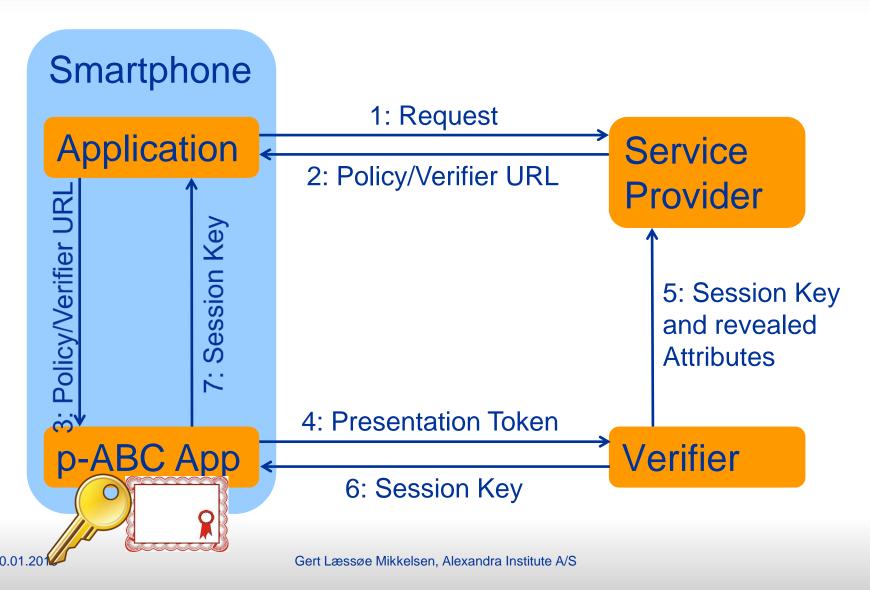
- Not so relevant roles
 - Issuer
 - Revocation authority

Smart Card emulation

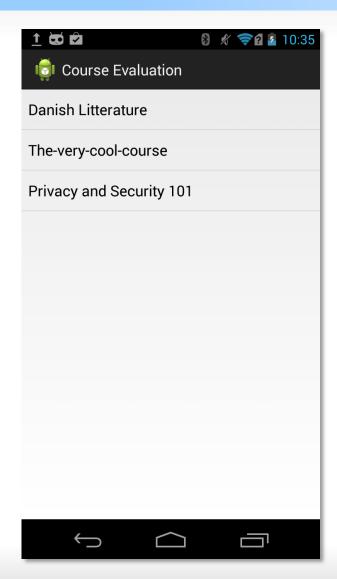
- Still Client(PC)-server setup
- Development time
- + Performance
- + User Convenience
- User interface
- No additional HW
- Security
- Devices

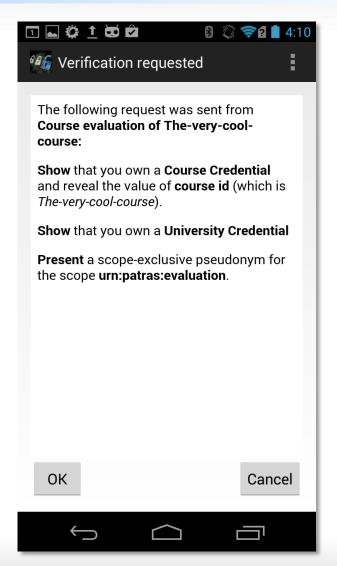
Native App

user service of ABC4Trust reference implementation as mobile service-app


- Android!
 - ABC4Trust Reference implementation in Java

- Security
 - Keys/Credential stored in ABC4Trust App's internal memory
- Usability?


Native App



Native App

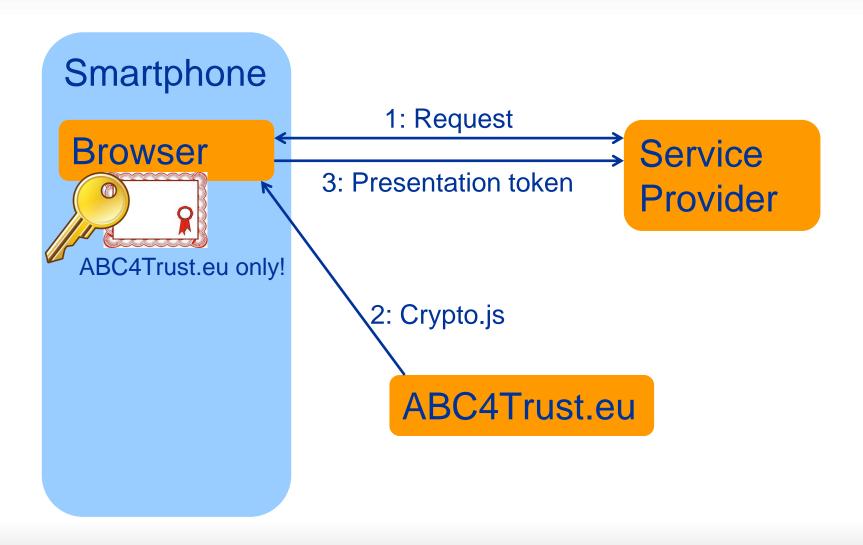
MS U-Prove Native App.

 MS U-Prove C# version can run on Windows Phones

JavaScript?

- JavaScript is highly cross platform
 - Every device with a modern browser
 - Not build for security/Cryptography
 - How to verify the code?
 - Has someone changed the code server side?
 - Do I get the same code as everyone else?
 - Where to store keys/credentials securely?
 - Server side?
 - Cookies?
 - Local storage?
 - Issue when needed?

JavaScript Prototype



- Prototype implementation of MS U-Prove
 - U-Prove is simpler than the ABC4Trust reference implementation and Identity Mixer.
- Elliptic Curves using "jsbn" ("Stanford") library.
- Compatible with MS U-Prove C# library

JavaScript

JavaScript Performance

- Very dependent on platform, and use of libraries!
- Our implementation:
 - 2.1 sec (Galaxy Nexus, default browser)
 - 30 sec (iPhone 5, Safari)

 Microsoft implementation: iPhones nearly as fast as Androids.

JavaScript the new language for Crypto?

A lot is happening- Since this task of the project was finished:

- Microsoft U-Prove JavaScript (July 2014)
- Microsoft Research JavaScript Cryptography Library (August 2014)
- Google End-to-end Chrome Extension (June 2014)
- W3C Cryptography API

Security Mobile Devices.

- Subject to malware attacks
- Subject to physical theft

- Define a threat model
- Security improvements
 - Secure elements
 - Direct Anonymous Attestation TPM
 - SIM cards
 - Smart card read by the smartphone.

Conclusion

- Using p-ABC's on mobile devices is feasible
 - both as native applications and JavaScript.
- New use cases/improved user experience.
- New security issues
 - Mobile devices vulnerable to a number of attacks should be addressed according to the threat model.
- A lot is happening on JavaScript right now.
- D4.4 Smartphone feasibility analysis www.abc4trust.eu