Privacy-ABCs
Features and Architecture

Ahmad Sabouri

ahmad.sabouri@m-chair.de
Deutsche Telekom Chair of Mobile Business & Multilateral Security
Goethe University Frankfurt, Germany
www.m-chair.de

ABC4Trust Summit Event
January 20th, 2015
Brussels, Belgium
Goal of the Presentation

• We aim to:
 ▪ give an impression of the features and concepts of the Privacy-ABCs to all the audiences.
 ▪ introduce the architecture, processes, and the artifacts to application and infrastructure developers.
Example Scenario

First Name: Alice
Surname: König
Birthdate: 02.05.1986

Discussion Forum
Requirement = Name?

Untraceable

BUNDES DRUCKEREI

Unlinkable

Hütt
Requirement = Age > 18

Birthdate < 20.01.1997
Credentials and Issuance

• **Credential issuance**
 - list of pairs (attribute, value)
 - certified by issuer
 - key-bound to prevent sharing credentials

• **Advanced issuance:**
 - blindly issued attributes
 - carried-over attributes
Credential Presentation (1)

- Presentation
 - selected attributes from selected credentials
 - predicates over attributes
 - attribute1 =,>,< attribute2 or constant

First Name: Alice
Surname: König
Birthdate: 02.05.1986

Birthdate < 20.01.1997
Credential Presentation (2)

- **Pseudonyms**
 - equivalent to unlinkable public keys for user’s secret key
 - controlled linkability (e.g., account creation)
 - scope-exclusive pseudonym: unique per scope, unlinkable across different scopes
Interactions and Entities

Issuer → Credential Issuance → User → Token Presentation → Verifier
Credential Presentation (3)

- What happens if the users start misusing the provided anonymity?

- Inspection
 - The Service Provider makes an agreement with the user at the beginning.
 - The user delivers an identifier encrypted under the public key of the trusted Inspector.
 - The Inspector can investigate the case and reveal the identity of the user if the agreement is violated.
What happens if one needs to invalidate a credential?

- Credentials are stolen
- An attribute has changed
Interactions and Entities

- Credential Issuance
- Token Presentation
- Token Inspection
- Issuer
- User
- Inspector
- Revocation Authority
- Verifier
- Credential Revocation
- Revocation Info Retrieval
- Token Presentation
- Revocation Info Retrieval
The ABC4Trust Architecture Objectives

- Abstraction of concepts of Privacy-ABCs & unification of features
- A common unified architecture
 - That is independent of the specific technologies
 - Federation of privacy-ABC Systems based on different technologies
 - Interoperability between different privacy-ABC technologies
- Users will be able to
 - obtain credentials for many privacy-ABC technologies and
 - use them on the same hardware and software platforms
 - without having to consider which privacy-ABC technology has been used
- How do we achieve this?
 - System Architecture and components for handling privacy-ABCs
 - Unified and technology agnostic APIs
 - XML specification of all data formats, covering the full life-cycle of credentials
High-level view (user)

- technology-agnostic credential & policy handling
- unified and technology-independent APIs
High-level view (presentation)

language framework covering the full life-cycle of credentials and support all concepts

User

Verifier

User Side Deployment

Verifier Side Deployment

Identity Selector

request resource

presentation policy

presentation token

Policy-Credential Matcher

Evidence Generation Orchestration

Credential Manager

Crypto Engine (e.g. Idemix, U-Prove)

Policy-Token Matcher

Evidence Verification Orchestration

Token Manager

Crypto Engine (e.g. Idemix, U-Prove)
<?xml version="1.0" encoding="UTF-8"?>

<PresentationPolicyAlternatives xmlns="http://abc4trust.eu/wp2/abcschemav1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xenc="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://abc4trust.eu/wp2/abcschemav1.0 schema.xsd"
Version="1.0">
<PresentationPolicy PolicyUID="policy1" EnforceSameUserBinding="true" EnforceSameDeviceBinding="false">
<Message>
<Nonce>aDk3UEMzOTNjOTl1cmZHQ210U0c="/Nonce>
</Message>
<Pseudonym Alias="nym" Scope="http://sweden.gov/poll0105" Exclusive="true"/>
<Credential Alias="id"/>

<CredentialSpecAlternatives>
<CredentialSpecUID>urn:sweden:id</CredentialSpecUID>
</CredentialSpecAlternatives>

<IssuerAlternatives>
<IssuerParametersUID>urn:sweden:id:issuer</IssuerParametersUID>
</IssuerAlternatives>

<AttributePredicat Function="urn:oasis:names:tc:xacml:1.0:function:locale-compare">
<Attribute CredentialAlias="id" AttributeType="urn:sweden:id:locale"/>
</AttributePredicat>
</Credential>
</PresentationPolicy>
</PresentationPolicyAlternatives>
• Provide a truly plug-and-play architecture that allows the seamless integration of cryptographic primitives e.g.:
 ▪ Privacy-ABC signatures: Idemix and Uprove
 ▪ Predicate Proofs

• Move away from the "bridging" approach between several incompatible crypto engines

• Encapsulated in components with common interfaces, allowing the rest of the cryptographic layer to be implementation-agnostic
ABC4Trust Crypto Architecture (3)
Summary

• ABC4Trust produced a generic and layered architecture for Privacy-ABCs:
 ▪ Defining features, processes, and artifacts
 ▪ Enabling the Reference Implementation and the Pilots
 ▪ Preventing lock-in situations

• The architecture is more privacy-friendly than the available alternatives, e.g. STORK, which is important for the eIDAS discussion.

• The ABC4Trust Crypto Architecture enables modular instantiation of new Privacy-ABC technologies.
Questions?

Thanks for Your Attention

coord-abc4trust@m-chair.de